

Clues about the first stars from CEMP stars

Arthur Choplin, Georges Meynet, André Maeder

What are CEMP stars?

```
• CEMP star = Carbon-Enhanced Metal-Poor star 

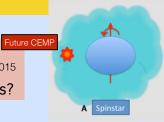
[Fe/H] < -1 

[C/Fe] > 1 

Beers & Christlieb 2005 

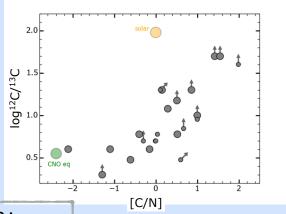
[X/Y] = \log_{10}(N_X/N_Y) - \log_{10}(N_{X\odot}/N_{Y\odot})
```

- Low [Fe/H] => close to early universe
- External source ?


What are CEMP stars?

• CEMP star = Carbon-Enhanced Metal-Poor star [Fe/H] < -1 [C/Fe] > 1 Beers & Christlieb 2005 [X/Y] = $\log_{10}(N_X/N_Y)$ - $\log_{10}(N_{X\odot}/N_{Y\odot})$

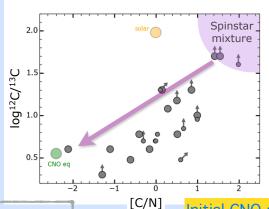
- Low [Fe/H] => close to early universe
- External source ?
- Spinstar scenario


Meynet et al. 2006,2010; Hirschi 2007; Maeder et al. 2015

Spinstar ejecta = observed abundances?

What CEMP are made of?

- MS
- Bright giant
- Upper/lower

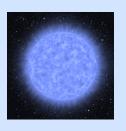

CNO cycle:

¹²C, ¹⁶O —> ¹⁴N, ¹³C

C+N+O = constant

What CEMP are made of?

- MS
- Bright giant
- Upper/lower limit


CNO cycle:

 12 C, 16 O —> 14 N, 13 C C+N+O = constant

Initial CNO distribution non solar in the spinstar

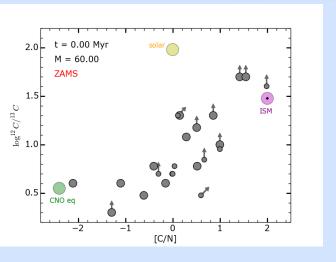
(Maeder et al. 2015)

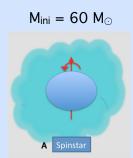
A typical model of spinstar

$$M = 60 M_{\odot}$$

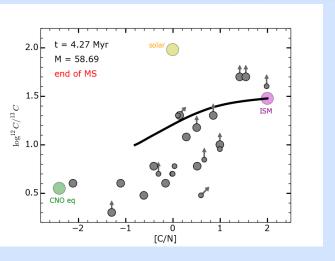
$$Z = 10^{-5}$$

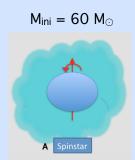
 $V_{eq,ZAMS} = 800 \text{ km/s } (v/v_{crit} = 0.7)$

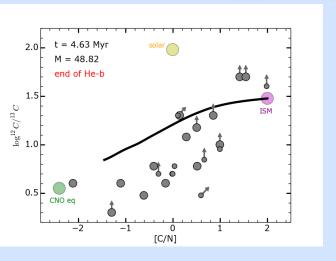

Mrad: de Jager et al. (1988), Kudritzki & Puls (2000),

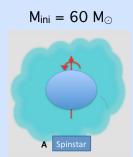

Vink et al. (2001),...

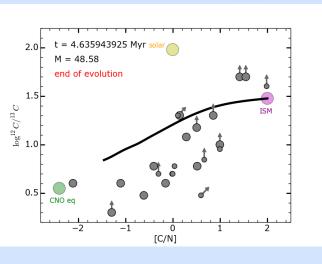
Mixing : D_h: Zahn (1992), <u>Maeder (2003)</u>, Mathis & Zahn (2004)


D_{shear}: Maeder (1997), <u>Talon & Zahn (1997)</u> (+Maeder 2014)

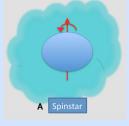

"Wind track" in log(12C/13C) vs [C/N]

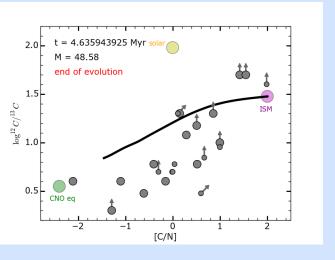


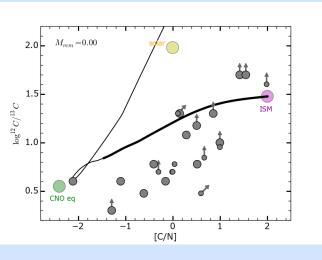

"Wind track" in log(12C/13C) vs [C/N]



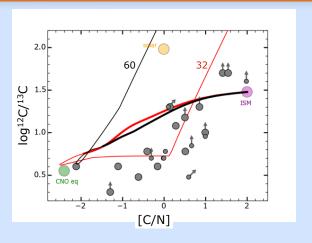
"Wind track" in log(12C/13C) vs [C/N]

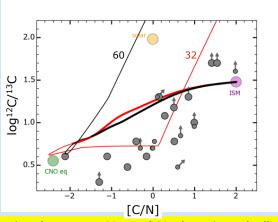



"Wind track" in $\log(^{12}C/^{13}C)$ vs [C/N]

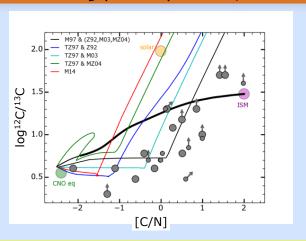


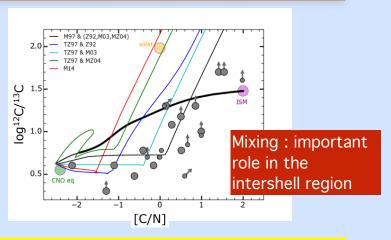
Most of the mass is lost when the surface is already enriched





SN:1) ¹⁴N and ¹³C
2) ¹²C


¹²C/¹³C: constraint on M_{rem}


late connexion between H- and He-burning shells
=> 12 C ✓ in the H-burning shell
=> primary 13 C (quickly formed) and 14N (formed slowly)

Various mixing prescriptions (after He-b)

other prescription for mixing
=> interaction between 2 shells occurs differently

Various mixing prescriptions (after He-b)

other prescription for mixing
=> interaction between 2 shells occurs differently

Summary & perspectives

- CEMP stars could be made of spinstar ejecta.
- Initial CNO mixture of the spinstar non solar(-scaled)?
- Fast rotation => mass is lost after the surface enrichment in CNO products => material "too much" CNO processed.
- Late transfer between H- and He- burning shells seems to be needed to build some CEMP => importance of mixing, SN (or stronger winds in late stages?)
 - Models at lower Z ? higher masses ?
 - More nuclear physics (Mg-Al, Ne-Na cycles)
 - Heavy elements (s-elements)