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Dynamical evolution of stars hosting planetary systems

- Tidal evolution & dissipation : s
- Modify stellar rotational dynamics : 0.8 ‘# 7
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- Strongly impacts the dynamics of short- Semi-Major Axis [Astronomical Units (AU)]

period systems

+ Varies over several orders of magnitude Observational constraints : transits and radial velocities
(stellar mass, age, rotation) : often roughly CoRoT, Kepler, HARPS, CHEOPS, TESS, SPIRou, PLATO

parametrized

— Need for a realistic ab initio modelling of tidal dissipation in stellar convective zones



Key mechanism : inertial waves in convective zones

Solid-body rotation : 2—1‘+2§zxﬁ=-vgﬁ

Balance between the Coriolis acceleration,
pressure gradient and gravity

Transverse waves :
Doppler-shifted frequency is in [-2Q, 2Q)],

propagate in the whole convective region
along straight rays

For given parameters, the kinetic energy
of the mode could concentrate and be
efficiently dissipated around sheared
structures which follow attractor cycles

Torque

- Resonant dissipation varying over orders “HE
of magnitude for low viscosities 12 :
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Ogilvie & Lin 2007
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Differential rotation of low-mass stars

- Helioseismic observations - Simulations
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Differential rotation strongly modifies inertial waves : e.g. Baruteau & Rieutord
(2013) for cylindrical and shellular rotation profiles

- |n stars, inertial waves in conical differential rotation have to be studied
- Methodology : understanding the complex behavior of free modes before studying

the tidal forced regime



Free inertial waves in conically differentially
rotating convective zones : inviscid analysis

- Conical rotation profile :

Q(8) = Quet (1 +€sin®0)

- Analytics shows that new features appear :

-+ Paths of characteristics are curved and depend on
azimuthal wavenumber m

- They may still converge towards attractor cycles or
focus towards a wedge (Dintrans & Rieutord 1999)

- Turning surfaces : boundary between hyperbolic
and elliptic domains (trapping)

- Corotation layers (m#0) : the Doppler shifted wave
frequency vanishes

Viscous dissipation induced by waves (important for tides)=> need to treat the viscous problem
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D modes

« Method : numerical simulations using the LSB linear solver after analytical projection of the
equations on vectorial spherical harmonics (Rieutord 1987, Baruteau & Rieutord 2013)

+ Curved propagation in the whole shell
- Overall properties similar to the solid-body rotation case
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Existence and behavior of DT modes ?

Population diagrams : resonant DT modes seem to be less common than D modes for all m
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Strongly differ from the solid-body rotation case : latitudinal
trapping

For m=0, DT modes preferably appear with anti-solar rotation
(e<0)

The situation is more complex for m # 0
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Non-axisymmetric modes & corotation resonances

- When m # 0, the Doppler-shifted frequency may vanish inside the domain

— corotation resonance
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- Complex behavior : valve effect / instabilities that require a dedicated study
(local model for corotation layers)



Perspectives and ongoing work

Forced regime : computation of tidal inertial
waves dissipation spectra as a function of stellar
mass, age and differential rotation and excitation
frequency

Modelling of the low-frequency oscillations of an
entire low-mass star, including the stably-
stratified radiative core.
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Chernov et al. 2013



June 4th, 2015 — SF2A (PNPS) M. Guene 10

THANK YOU FOR YOUR ATTENTION !




