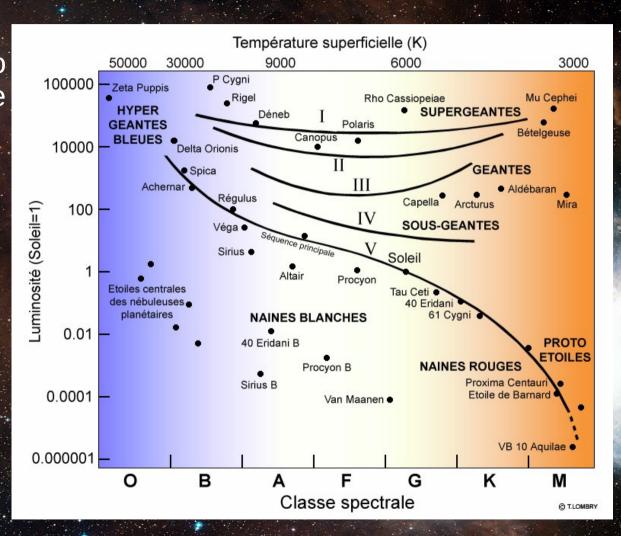
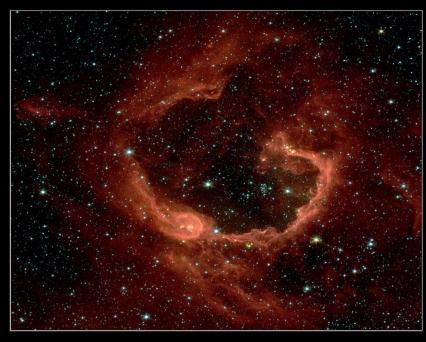

The First homogeneous set of stellar parameters of the reference O stars

Anthony Hervé, ASU


F. Martins (LUPM), J-C Bouret (LAM), W. Marcolino (Observatoire de Rio)


Introduction to massive stars

Main characteristics:

- Mass > 8 M⊙ (lower limit to obtain fusion of Carbon in the core of the star)
- Life time ~ 1-10 million years
- -High effective temperature 15kK < Temperature < 100kK T⊙= 5800K
- -High luminosity 10⁵ L⊙ < Luminosity < 10⁶ L⊙
- Strong mass loss rate 10⁻⁸ M⊙/yr < Mdot <10⁻⁴ M⊙/yr

Introduction to massive stars

Star-Forming "Bubble" RCW 79 Spitzer Space Telescope • IRAC NASA / JPL-Caltech / E. Churchwell (University of Wisconsin-Madison) sig05-001

Supernovae explosions:

Chemically enrich the ISM on larger scales

Stellar winds:

- -Trigger low-mass star formation
- -Chemically enrich the Interstellar Medium (ISM)

Introduction to massive stars

```
For stars initially more massive than \sim 75M\odot
O \rightarrow WN(H - rich) \rightarrow LBV \rightarrow WN(H - poor) \rightarrow WC \rightarrow SNIc,
```

whereas for stars of initial mass from $\sim 40-75 \text{M}\odot$, $O \rightarrow \text{LBV} \rightarrow \text{WN(H} - \text{poor)} \rightarrow \text{WC} \rightarrow \text{SNIc}$,

for stars of initial mass in the range 25-40M \odot , O \rightarrow LBV/RSG \rightarrow WN(H - poor) \rightarrow SNIb.

for stars of initial mass in the range $20-25M\odot$, $O \rightarrow RSG \rightarrow WN \rightarrow SNII/Ib$ And for stars of initial mass in the range $10-20M\odot$ $OB \rightarrow RSG \rightarrow BSG \rightarrow SNII$

Massive star atmosphere

High luminosity radiative processes dominate over collisional → processes ⇒ Non LTE treatment mandatory

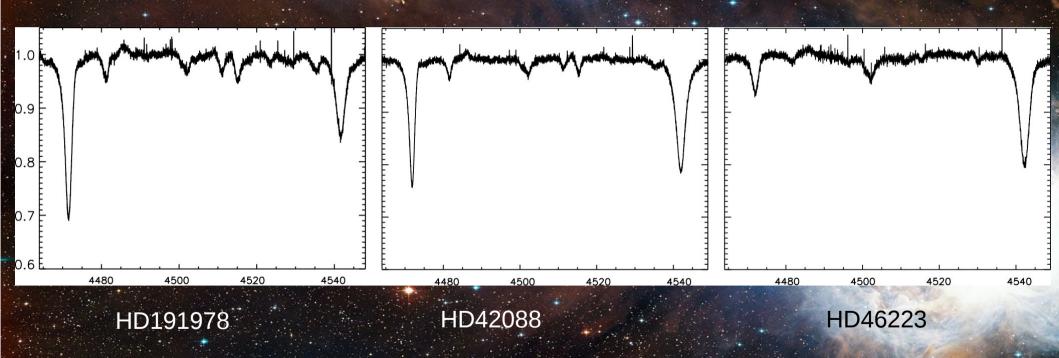
- Strong stellar winds → typical scale of the atmosphere >> stellar radius
- ⇒ Spherical geometry mandatory
- → velocity gradients
- ⇒ Doppler shifts and non local photon / matter interaction.
- Presence of metals: UV spectrum dominated by metallic lines
- ⇒ Line-blanketing effects

Codes:

- CMFGEN (Hillier & Miller 1998)

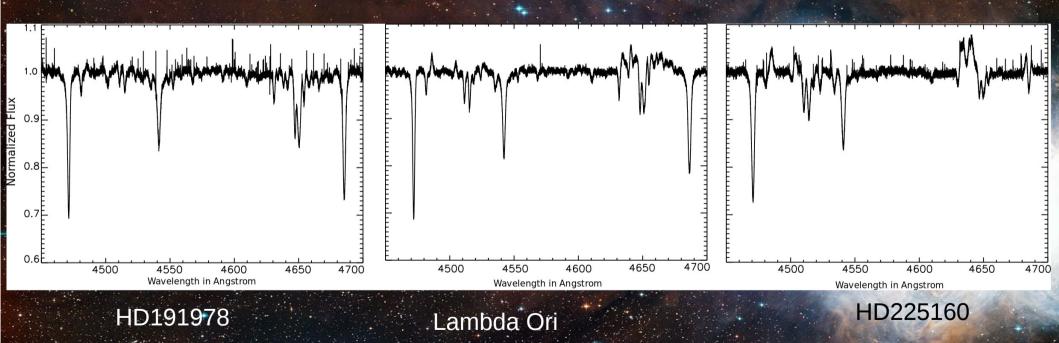
Spectral type and luminosity class determination

In 70's Walbon identified key lines which varying across the population of O stars:


He develops a 2 dimension classification :

- spectral type from O9.7 to O4
- luminosity class from dwarf (V) to brigth supergiant supergiant (Ia)

This classification is still relevant today

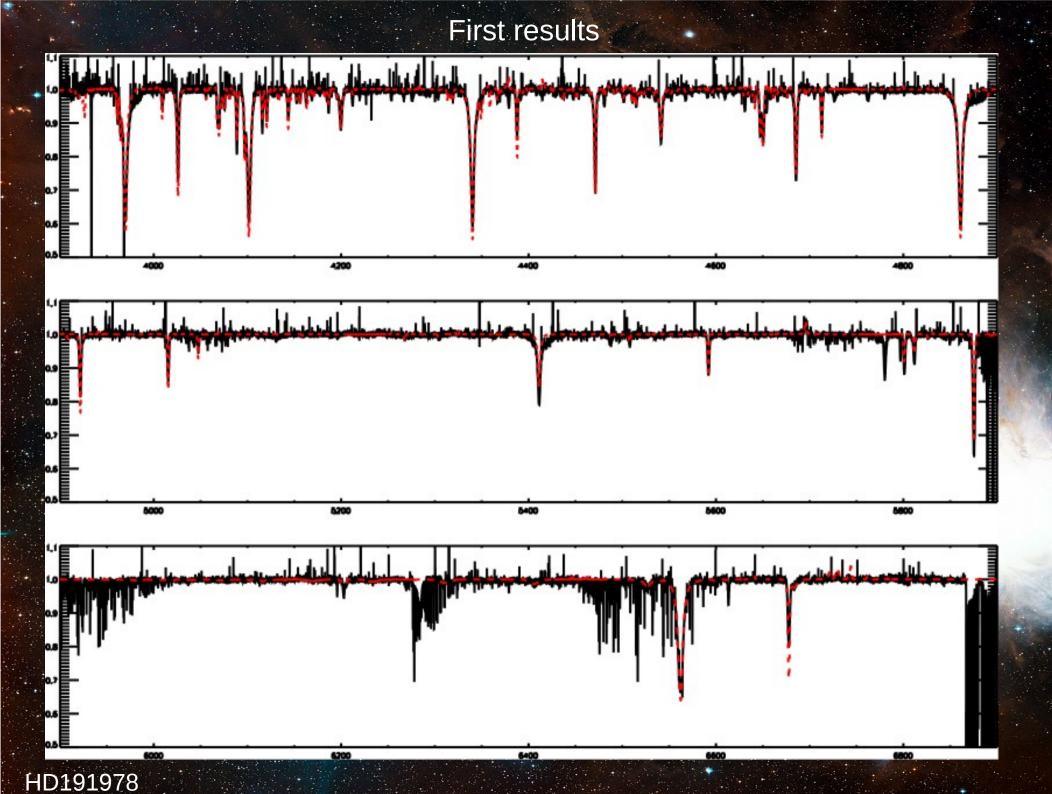

Spectral type and luminosity class determination

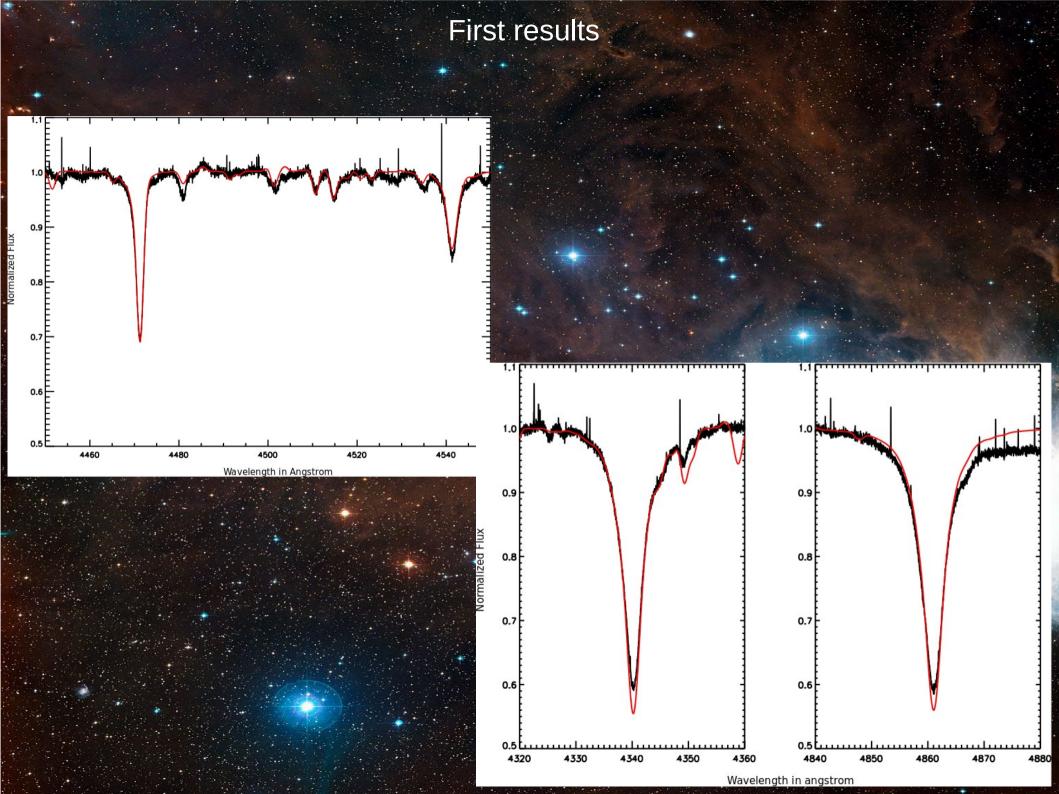
The relative strength of the HeI and HeII lines is used to define the spectral type.

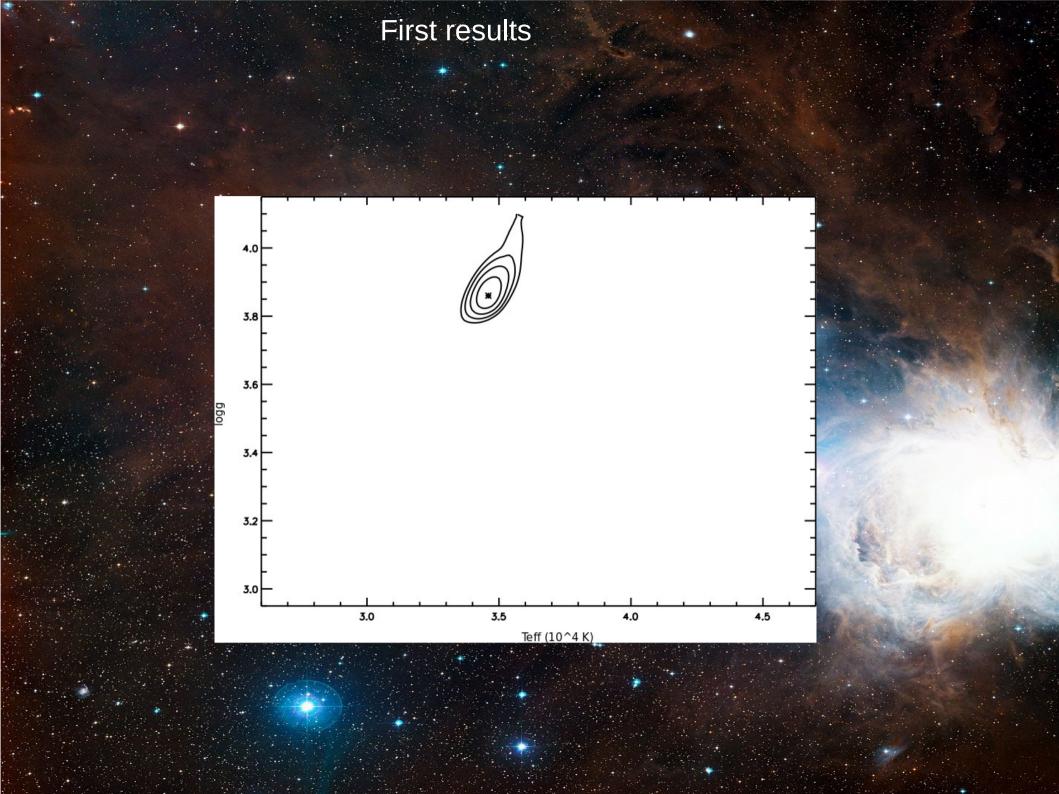
Spectral type and luminosity class determination

the ratio of Hel and Si IV lines are used to determine the luminosity class

	V	IV	III	II	Ib	Iab/I	Ia
O2						HD 93 129 AaAb	
О3	HD 64 568					Cyg OB2-7	
O3.5	HD 93 128		Pismis 24-17			Pismis 24-1 AB	
O4	HD 46 223		HD 168 076 AB			HD 15 570	
	HD 96 715		HD 93 250			HD 16 691	
						HD 190 429 A	
O4.5	HD 15 629		Cyg OB2-8 C			HD 14 947	
	HDE 303 308					Cyg OB2-9	
O5	HD 46 150		HD 168 112			CPD -47 2963	
	HDE 319 699		HD 93 403				
			HD 93 843				
O5.5	HD 93 204					Cyg OB2-11	
O6	HD 42 088 HDE 303 311	HD 101 190		HDE 229 196			HD 169 582
O6.5	HD 91 572 HD 12 993	HDE 322 417	HD 190 864 HD 96 946 HD 152 723 HD 156 738	HD 157 857			HD 163 758
O7	HD 93 146 HDE 242 926 HD 91 824 HD 93 222 15 Mon AaAb		Cyg OB2-4	HD 94 963 HD 151 515	<i>HD 69 464</i> HD 193 514		
O7.5	HDE 319 703 A HD 152 590		HD 163 800	HD 34 656 HD 171 589	HD 17 603 HD 156 154	HD 192 639 9 Sge	
O8	HD 191 978 <i>HD 97 848</i>	HD 97 166	HDE 319 702 λ Ori A	HD 162 978	BD -11 4586	HD 225 160	HD 151 804
O8.5	HD 46 149 HD 57 236 HD 14 633	HD 46 966	<i>HD 114 737</i> HD 218 195 A	HD 75 211	HD 125 241		HDE 303 49
O9	10 Lac HD 216 898	CPD -41 7733 HD 93 028	HD 24 431 HD 93 249 HD 193 443 AB	τ <i>CMa</i> HD 207 198 <i>HD 71 304</i>	19 Cep	HD 202 124 HD 148 546 HD 152 249	α Cam
O9.5	AE Aur HD 46 202 HD 12 323	HD 192 001 HD 93 027 HD 155 889 HD 96 622	HD 96 264	δ Ori AaAb	HD 76 968	HD 188 209 HD 154 368 HD 123 008	
O9.7	υ Ori	HD 207 538	HD 189 957	HD 68 450	V689 Mon	HD 225 146	HD 195 592
			HD 154 643	HD 152 405		HD 75 222	HD 173 010
				HD 10 125		μ Nor	HD 105 056


17 Standard O-type ars but few binary stems


Observation


- Observations with SOPHIE (R=40000) on the 193 cm at OHP for the north hemisphere stars
 - 5 nights in August 2014
 - 1 night in december 2014
 - SNR ~ 300

- FEROS (R=48000) archive for the star in the south hemisphere

- IUE and HST archive for the UV spectra

First results 3.8 3.2 3.0 L 6.0 6.5 7.0 7.5 8.5 8.0 9.0 spectral type

Determination of the stellar and wind parameters for all the standard O-type stars:

- Effective temperature
- surface gravity
- mass loss rate and clumping
- CNO abundances