γ^2 Velorum: combining interferometric observations with hydrodynamic simulations

Astrid Lamberts University of Wisconsin-Milwaukee

Collaborators: Florentin Millour - Olivier Chesneau (OCA, Nice)

Journées de la SF2A - Toulouse - 4 juin 2015

Studying stellar winds through colliding wind binaries

Different stars, evolutionary stages \rightarrow different winds

Massive stars (O, B, WR) \rightarrow Radiation pressure on lines

- $v_{\infty} \simeq 2000 \, {\rm km \, s^{-1}}$
- \bullet $10^{-8} M_{\odot} \, \mathrm{yr^{-1}} < \dot{M} < 10^{-4} M_{\odot} \, \mathrm{yr^{-1}}$
- Temperature ≈ 30-70kK

Why study colliding stellar winds?

- Winds important for stellar evolution
- Winds important for interstellar medium
 - Chemical enrichment
 - Energy injection comparable to supernova explosion
- Large fraction of massive stars are in binary systems

A. Lamberts

Observational clues and open questions

- thermal X-ray emission
- line variability (IR→ X-rays)
- non-thermal radio emission
- infrared emission if dust
- \rightarrow wind structure at given distance

Questions

- Explain structure of CWB (radiative effects, instabilities...)?
- Explain variability ?
- Explain dust formation (too hot, too much UV...) ?

The binary γ^2 Velorum

closest WR star: WC 8 + 06P=78 d. e=.3. i=65°

- Radio obs: \dot{M}_{WR}
- IR: no dust production
- optical/UV: detection of wind collision region, probably with radiative braking (StLouis+1993; DeMarco+2002)
- X-rays: high T shocked region (Willis+1995;Henley+2005)

Most observations dominated by WR wind

Observed orbital phases (Millour, Lamberts,+ in prep)

First interferometric data

AMBER/VLTI observations: J, H, K bands, $\Delta\lambda_{max}/\lambda=12000$. low resolution full orbital coverage+high resolution, high SNR data Provides spatial information: brightness ratio, angular sizes (continuum + lines), isolation of O-star spectrum

Interferometric data

Model with WR and O with not sufficient

- → wind collision region?
- \rightarrow possibility to constrain large scale structure of wind if collision region well understood

The power of hydro simulations

- Large scale, time-variable multi-D structure (e.g. Walder+2003; Lemaster+2007)
- Various instabilities (Stevens+1992; Pittard+2009)

3D structure (Lemaster+, 2007) / Instabilities (Lamberts+, 2011)

The RAMSES code

RAMSES (Teyssier, 2002; Fromang et al, 2006) solves the Euler equations Adaptive Mesh Refinement: Local increase of resolution according to gradients \rightarrow well-suited for discontinuities

AMR map : $\textit{I}_{\textit{min}} = 7$, $\textit{I}_{\textit{max}} = 16$ and density map

Hydrodynamic structure of γ^2 Vel

Simulation: $L_{box} = 6a, 3D, N_{max} = 512^3$, with cooling and orbital motion

Limited development of instabilities Cooling important in WR wind

Collision region emission 2 μm

Postprocessing: free-free emission and absorption

(Millour, Lamberts + in prep)

Shocked structure contributes to continuum emission

Visibility curves

Visibility \rightarrow spatial extension of system

(Millour, Lamberts + in prep)

Estimates of visibility depend on contribution of wind collision region \rightarrow consistent with observations

Conclusions

To remember

- ullet γ^2 Vel closest WR binaryo ideal target
- ullet Combining interferometric observations with hydro model o confirm presence of colliding wind region

To do

- Complete visibility study
- Study line emission
- confirm radiative braking
- constrain WR wind at large distance