GRAVITO-INERTIAL MODES OF OSCILLATION IN A DIFFERENTIALLY-ROTATING RADIATIVE ZONE

Giovanni M. Mirouh

Clément Baruteau, Michel Rieutord, Jérôme Ballot

Journées de la sf2a

Thursday, June 4th 2015

Massive or intermediate-mass stars are usually rotating fast and differentially.

 \lhd Rotation profile of Regulus (4.1 M_{\odot}) with the ESTER code.

- ullet Fast rotation o flattening,
- Differential rotation
 → fast core. slow surface.

Espinosa Lara & Rieutord (2013)

Gravito-inertial modes \rightarrow restored by buoyancy and Coriolis forces. They allow us to probe deep layers in the radiative zone of massive stars, and are excited by the internal κ -mechanism or tidal effects from close-in planets.

Differential rotation is expected in all kinds of stars, and increases through their evolution:

Espinosa Lara & Rieutord (2013)

 \rightarrow impact on the gravito-inertial modes?

Context

We solve the oscillations' eigenproblem using a simplified model:

- We use the Boussinesq approximation,
- We impose a linear temperature gradient: $\nabla T = -\beta r/R$

Equations

We normalize equations using

$$L_{\text{ref}} = R, \quad t_{\text{ref}} = \Omega(R)^{-1}, \quad \Theta_{\text{ref}} = \beta R$$

• Normalized equations read

$$\nabla \cdot \boldsymbol{u} = 0$$

$$\partial_t \Theta - r u_r = \frac{\mathrm{E}}{\mathrm{Pr}} \Delta \Theta$$

$$\partial_t \boldsymbol{u} + \Omega \partial_{\phi} \boldsymbol{u} + 2\boldsymbol{\Omega} \times \boldsymbol{u} + s \left(\boldsymbol{u} \cdot \boldsymbol{\nabla} \Omega \right) \boldsymbol{e}_{\phi} = -\frac{1}{\rho_0} \boldsymbol{\nabla} P + \mathrm{E} \nabla^2 \boldsymbol{u} - N^2 \Theta \boldsymbol{r}$$

using the dimensionless parameters

$$N^2 = \frac{\alpha \beta g_0}{\Omega(R)^2}, \qquad \text{Pr} = \frac{\nu}{\kappa}, \qquad \text{E} = \frac{\nu}{\Omega(R)R^2}.$$

• stars \rightarrow Pr \ll 1, E \ll 1, simulations \rightarrow Pr $\sim 10^{-4} - 1$, E $\sim 10^{-9} - 10^{-6}$.

Radial rotation profile

We impose a stable radial Brunt-Väisälä frequency profile, *Chandrasekhar* (1961)

$$\nabla T = -\beta r/R \quad \Rightarrow \quad n(r) = N \times r.$$

 \rightarrow first compilations of oscillations in a fluid where the differential rotation is obtained from the baroclinic flow.

The baroclinic flow yields a simple solution, provided we use no-slip inner and outer boundary conditions: *Rieutord* (2006)

$$\Omega = 1 + \int_{-\infty}^{1} \frac{n^2(r')}{r'} = 1 + \frac{N^2}{2}(1 - r^2).$$

We consider a spherical radiative zone for 1 > r > 0.35. We use $N^2 < 10$ to limit the differential rotation to a factor 5.

Methods used

We combine two methods to solve this eigenproblem:

- we compute the eigenvalues and associated vector considering finite dissipations,
- setting the dissipations to zero, the eigensystem reduces to a second-order partial differential equation: Colombo (1976)

$$(N^2z^2 - \Omega_p^2)\frac{\partial^2 p}{\partial s^2} - (2N^2sz - 2\Omega N^2sz)\frac{\partial^2 p}{\partial s\partial z} + (4\Omega^2 - 2\Omega N^2s^2 + N^2s^2 - \Omega_p^2)\frac{\partial^2 p}{\partial z^2} = 0.$$

This equation is of mixed type: gravito-inertial modes do not necessarily span the whole radiative zone \rightarrow we may compute characteristics and turning surfaces in the star.

Mode classification

Nr=498 L=996 M=0 E=1.0x10⁻⁹ P=1.0x10⁻² N²=0.45

modes spanning the whole shell \rightarrow D modes

Nr=498 L=996 M=0 E=1.0x10⁻⁹ P=1.00

modes with turning surfaces

 \rightarrow DT modes

Mode classification

Lyapunov exponents

Characteristics tend toward an attractor

 \rightarrow strength of the focusing quantified by the Lyapunov exponent Λ

$$dx_{n+1} = dx_n e^{\Lambda}.$$

 $\Lambda < 0 \rightarrow \mbox{convergence}$ toward an attractor,

 Λ close to zero \to regular mode.

Lyapunov exponents

0.4 Nr=300 L=600 M=0 E=1.0x10° P=1.0x10° N²=1.10

0.2

0.6

Example of axisymmetric modes

We follow a (gravito-)inertial mode from $N^2=0$ to $N^2=1$.

- \rightarrow characteristics are straight lines at $N^2=0, \delta\Omega=0.$
- \rightarrow characteristics are curves when differential rotation is present.
- \rightarrow the characteristics cross the critical latitude for $N^2\gtrsim 0.7$.

Video of the evolution of this mode \rightarrow www.tinyurl.com/GMMirouh

Example of axisymmetric modes

We follow a gravito-inertial DT mode while decreasing E at constant Pr (i.e. $\nu \searrow \& \kappa \searrow$).

Asymptote: $- au \propto \mathrm{E}^{0.45}$

Video of the evolution of this mode → www.tinyurl.com/GMMirouh

Example of axisymmetric modes

We follow a gravito-inertial DT mode while increasing Pr at constant E (i.e. $\kappa \setminus \text{only}$).

Asymptote: $-\tau \propto \Pr^{-0.53}$

Video of the evolution of this mode → www.tinyurl.com/GMMirouh

ightarrow regular modes structure independent from E

 $\rightarrow \textbf{corotation resonances}$

 $\exists r \mid \omega + m\Omega(r) = 0 \to \boldsymbol{v_{\phi}} = 0$

Conclusions

So far.

- we computed the modes of oscillations on a differentially-rotating flow. and their characteristics in the non-dissipative limit;
- we predict accurately the extent of the propagation domain;
- we can predict the presence and the strength of characteristics, depending on the mode frequency.

We need to

- use quadruple precision in our code to study corotation resonances
- find a general characterization of the modes' focusing on singular structures
- finish a 30-page paper for Journal of Fluid Mechanics (coming soon!)

Thanks for listening!

Conclusion