DE LA RECHERCHE À L'INDUSTRIE

What can we learn from asteroseismology of β Cephei stars?

S.Salmon, J. Montalban, A. Miglio, M-A. Dupret, M. Briquet, A. Noels DSM/IRFU/Sap - CEA Saclay

Main-sequence B stars

- Rare objects (~0,125%)
- Masses between
 2.5 et 18 Mo
 Rather simple structure

Main-sequence B stars

Why looking at these stars?

- Interaction with the interstellar medium (stellar winds)
- Real chemical element factories
- Define the mass range in which stars end their life by a core-collape supernova

Why looking at these stars?

- Interaction with the interstellar medium (stellar winds)
 - Real chemical element factories
- Define the mass range in which stars end their life by a core-collape supernova

A lot of uncertainties, among which size of the central mixed region during the main sequence

Why looking at these stars?

A lot of uncertainties, among which size of the central mixed region during the main sequence

Main-sequence pulsating B-type stars

β Cephei: ∼8 to 18 M⊙ - low-order p and g mode - P from 2 to 8 hours

SPB: ~2.5 to 8 M₀
high-order g modes
P from 1 to 3 days

к mechanism activated by the Fe-group opacity peak (Moskalik & Dziembowski 1992; Dziembowski, Moskalik & Pamyatnykh 1993

Extra-mixing near the convective core

- Instantaneous mixing: overshooting, expressed in Hp (e.g. : Maeder 1975 ; Bressan et al. 1981)
- Diffusive mixing : e.g. rotation (meridional circulation + shear ; e.g. : Pinsonneault et al. 1991 ; Maeder & Zahn 1998 ; Meynet & Maeder 2000, and ref. therein)

Several ß Cephei stars thoroughly studied

Refs: Aerts et al. 2003, 2004; Dupret et al. 2004 ; Thoul et al. 2004; Handler et al. 2004 ; Aerts et al. 2004 ; De Ridder et al. 2004 ; Pamyatnykh et al. 2004 ; Aerts et al. 1994 ; Shobrook et al. 2006 ; Mazumdar et al. 2006 ; Aerts et al. 1992, 2006 ; Belkacem et al. 2009 ; Degroote et al. 2009 ; Aerts et al. 2011 ; Handler et al. 2006 ; Desmet et al. 2007; Desmet et al. 2009 ; Handler et al. 2005; Briquet et al. 2005; Briquet et al. 2007 ; Neiner et al. 2003 ; Morel et al. 2006 ; Handler et al. 2012 ; Briquet et al. 2013

 Broad range of <u>overshooting</u> values, no connection with v sin i.
 What is actually measured?

- ⇒ Series of « Hare and Hound » exercises (see e.g. Thoul et al. 2003)
 - A model is defined by M, X, Z, age, α_{ov} : degeneracy affecting these parameters?
 - Accuracy of the retrieved stellar parameters

We use forward approach modelling

• Based on a seismic merit function (m=0) :

$$\chi^{2} = \frac{1}{N_{\text{obs}}} \sum_{i=1}^{N_{\text{obs}}} \frac{(\nu_{\text{obs},i} - \nu_{\text{th},i})^{2}}{\sigma_{i}^{2}}$$

• Computed on a pre-computed grid (Briquet et al. 2009) of adiabatic frequencies for stellar models:

Parameter	Range	Step
M (in M _☉)	7.6 – 18.6	0.1
Х	0.68 - 0.74	0.02
Z	0.010 - 0.018	0.002
$\alpha_{\rm ov}$	0 - 0.50	0.05

 With or without considering classical parameters (log g – Te) a posteriori Monte-Carlo simulations implemented to derive theoretical uncertainties

 Monte-Carlo simulations implemented to derive theoretical uncertainties

 Monte-Carlo simulations implemented to derive theoretical uncertainties

x 1000 (=Nsim)

« Hare and Hound » exercises

Several stellar models used as synthetic « observed » stars (the hare)

Mass	Хс	Mixture	Opacity	Overshooting	Turbulent mixing
9-14 Mo	0.20-0.50	GN93/AGS05	OP/OPAL	0-0.2	Y/N

How inferences depends on:

- Number of frequencies required
 - 3 to 5 frequencies, with identified ℓ
- Micro-physics :
 - GN93 vs AGS05
- Macro-physics :

- turbulent diffusive mixing vs instantenous mixing

i. Analysing the role of seismic constraints

Input model (« observed » star)	Fitting models
AGS05/OP	AGS05/OP

t1, 3 frequencies, ℓ known (0,1,2) •

Parame	ter Input t1	Fitting model 3 freq.
M (Mo)	14	15.6
R (Ro)	7.48	10.18
X	0.70	0.70
Z	0.014	0.018
αov	0.20	0.45
Хс	0.288	0.237
	I	

Input model (« observed » star)	Fitting models
AGS05/OP	AGS05/OP

• t1, 5 frequencies, *l* known (0,1,2)

Global minimum

Parameter	Input t1	Fitting model 5 freq.
M (Mo)	14	13.8
R (R⊙)	7.48	7.45
Х	0.70	0.68
Ζ	0.014	0.014
αov	0.20	0.20
Хс	0.288	0.274

Input model (« observed » star)	Fitting models
AGS05/OP	AGS05/OP

Errors on the parameters from the MC simulations

Parameter	Input	Uncertainty 3 freq.	Uncertainty 5 freq.
M (Mo)	14	23%	1%
R (R⊙)	7.48	31%	1%
Х	0.70	6%	6%
Z	0.014	29%	14%
αον	0.20	50%	25% (grid limit)
Хс	0.288	9%	11%

Input model (« observed » star)	Fitting models
AGS05/OP	AGS05/OP

Input model (« observed » star)	Fitting models
AGS05/OP	AGS05/OP

• t1, 5 frequencies, ℓ known, 1 misidentification

Input model (« observed » star)	Fitting models
AGS05/OP	AGS05/OP

• t1, 5 frequencies, ℓ known, 1 misidentification

ii. The hare star and the theoretical hound grid present a different <u>micro-physics</u>

Input model (« observed » star)	Fitting models
GN93/OP	AGS05/OP

• t2, 6 frequencies, ℓ known (0,1,2)

Input model (« observed » star)	Fitting models
GN93/OP	AGS05/OP

iii. The hare star and the theoretical hound grid present a different <u>macro-physics</u>

Input model (« observed » star)	Fitting models
AGS05/OP + diffusive mixing	AGS05/OP

• t6, 8 frequencies, ℓ known (0,1,2)

Input model (« observed » star)	Fitting models
AGS05/OP + diffusive mixing	AGS05/OP

• t6, 8 frequencies, ℓ known (0,1,2)

Input model (« observed » star)	Fitting models
AGS05/OP + diffusive mixing	AGS05/OP

iv. The hare star and the theoretical hound grid present different micro- and macro-physics

Input model (« observed » star)	Fitting models
GN93/OPAL + diffusive mixing	AGS05/OP

 t5, 8 frequencies from mixed modes mainly trapped in the g mode cavity, ℓ known (0,1,2)

Parameter	Input	Fitting model
M (Mo)	10	10.8
R (Ro)	5.24	5.38
Х	0.70	0.74
Z	0.020	0.018
αov	0.10*	0.10
Хс	0.418	0.450

Conclusion

• When physics of the target star and theoretical models are the same:

- 3 frequencies (with known ℓ) provide insufficient constraints
- 4 to 5 frequencies with known ℓ lead to accurate seismic inferences
- central mixed region correctly determined in terms of m/M

• When micro-physics is different:

- degeneracy on M-X-Z- α_{ov}
- central mixed region not constrained in terms of m/M
- ⇒Need of complementary observations, in particular individual abundances

• When macro-physics is different:

 in our tests, the nature of extra-mixing is undetermined

 \Rightarrow Trying to introduce a new parameter to fit

• Perspective: new observational campaigns

- A few β Cephei stars of interest:
 - v Eri (De Ridder et al. 2004)
 13 frequencies, 7 with identified *ℓ*:
 1 ℓ0, 6 ℓ1 (5 are members of rotational triplets)
 - − θ Oph (Briquet et al. 2007)
 7 frequencies with identified *l*:
 1 *l*0, 3 *l*1 (triplet), 3 *l*2 (part of a quintuplet)
 - HD 129929 (Dupret et al. 2004)
 6 frequencies with identified *ℓ*:
 - 1 ℓ 0, 3 ℓ 1 (triplet), 2 ℓ 2 (part of a quintuplet)
 - 12 Lac (Desmet et al. 2009)
 10 frequencies, 4 with identified *ℓ*:
 - 1 *l*0, 2 *l*1 (triplet?), 1 *l*2

Thank you!