
1.	Period-luminosity	relation	and	the	cosmological	distance	ladder

Identifying	the	non-linearities in	the	period-luminosity	relations	of	Cepheids
Julien	Dassa-Terrier1* and	David	Valls-Gabaud1,2

1LERMA,	Observatoire de	Paris
2Institute	of	Astronomy,	Cambridge
*julien.dassa-terrier@obspm.fr

2.	Non-linearities and	breaking	points

The period-luminosity relations of Cepheids are essential to characterize the second step of the cosmological distance ladder. However, the possible non-linearity and
breaking points around a period of 10 days have important consequences for their use. Here we summarize two statistical techniques aimed at identifying these points and
quantifying the implied non-linearities. The efficiency of these methods is discussed with observational samples from the Magellanic Clouds and M31.
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5.	Applications	to	M31 6.	Conclusions	and	further	investigations

Bai & Perron 2003, JAE, 18, 1― Barry & Hartigan 1993, JASA, 88, 309― Caputo
et al. 2000, A&A, 359, 1059C― Erdman & Emerson 2007, JSS, 23, 03― Kodric et
al. 2015, AJ, 799, 144K ― MACHO Project― Marconi et al. 2005, AJ, 632, 590M
― Ngeow & Kanbur 2009, ASPC, 404, 262N ― Ngeow et al. 2005, MNRAS, 363,
881N― Ngeow et al. 2008, A&A, 477, 621N― Riess et al. 2012, AJ, 745, 156R―
Tammann et al. 2002, ASPC, 283, 258T― Udalski et al. 1999, AcA, 49, 437

Aknowledgements: we would like to thank Anne-Laure Melchior and Gerard
Gregoire.

7.	References

Figure 4 – Breaking points found by both BP and bcp methods for different values of 𝑁 and 𝜎. As the bcp
method provides us with a probability for each object to be a breaking point, we compute the value of the
breaking point with two different methods displayed as bcp1 and bcp2. The latter gives better results
particularly for𝜎 = 0.4, where bp and bcp1 showdifficulties to identify a breakingpoint.

Recent studies, including Tammann et al. (2002), Ngeow & Kanbur (2009) and Kodric et al. (2015), strongly imply
that the LL shows a non-linear behaviour in the LMC, SMC and M31 with the presence of a breaking points at
𝑃 = 10	𝑑. This breaking point was already suggested by Kakurkin in 1937 (Ngeow et al. , 2005).

This is an empirical observation and a controversial
topic. Several solutions have been suggested such as:
the dependence of the LL on metallicity (Caputo et
al., 2000; Marconi et al. , 2005) or the interaction of
stellar photosphere with the hydrogen ionization
front (Ngeow& Kanbur, 2009).

• The	model	proposed by	Kodric et	al. (2015),	displayed in	
table	1,	serves	as	a	fundation to	build our simulations.

• We choose𝑁 the	number	of	objects.
• We	choose	𝜎 the	added	noise	to	the	magnitude.
• 𝜏,	the	breaking	point,	is	always	log/0 𝑃 = 1.

Essential dates:
• 1838 – Bessel measures the parallax of 61 Cygni.
• 1912 – Leavitt discovers the Period-Luminosity relation, also

called Leavitt Law (LL): 𝑴 = 𝒂. 𝐥𝐨𝐠𝑷 + 𝒃, which correlates the
period and absolute mean magnitude of Cepheids.

• 1924 – Hubble uses the LL to calculate the distance of the
galaxy M31.

• 1968 – Sandage and Tammann introduce the period-
luminosity-colour relation which adds a colour element to the LL:

𝑴 = 𝜶. 𝐥𝐨𝐠𝑷 + 𝜷. (𝑩 − 𝑽) + 𝜸

Figure 1 – The LL for 68 classical Cepheids from the POMME
survey. The law shows a linear behaviour for log 𝑃 ≥ 1
(Riess et a., 2012).

The calibration of the LL is a very important, debated topic,
essential to find the distance modulus:
𝝁 = 𝒎−𝑴 = 𝟓𝒍𝒐𝒈 𝒅 − 𝟓 , where 𝑚 is the apparent
magnitude and 𝑑 the distance to the star.
Cepheids being standard candles, the slope 𝒂 of the LL can be
found by observing the magnitude and period of a group of
Cepheids (see figure 1) while the zero point 𝒃 must be found
using galactic Cepheids with known distances.
Riess et al. (2012) propose one of the most recent calibrations
using data from HST (PHAT) and CFHT (POMME survey) applied to
the distance measurement of M31. They estimate M31 distance
to be 752 ± 27	𝑘𝑝𝑐 and find 𝐻0 = 75.4 ± 2.9	𝑘𝑚	𝑠T/	𝑀𝑝𝑐T/.

This behaviour might have a strong impact on the
slope of the LL, hence on the distance modulus and
𝐻0 calculations. Kodric et al. (2015)

Without a strong consensus on one physical explanation, the non-linear behaviour of the LL remains largely
studied through statistical analysis, particularly the F-test (Ngeow et al., 2004).

We suggest two alternative approaches:
• the frequentist Bai and Perron’s method BP (Bai & Perron, 2003),
• the Bayesian Barry and Hartigan’s method bcp (Barry & Hartigan,

1993; Erdman & Emerson, 2007).

Figure 2 – The LL breaking point
for 319 fundamental mode (FM)
Cepheids in the galaxy M31 as
shown in Kodric+ (2015).

Band Slope	𝐥𝐨𝐠 𝑷 ≤ 𝟏 Slope	𝐥𝐨𝐠 𝑷 > 𝟏 Intercept	𝐥𝐨𝐠 𝑷 = 𝟏
F110W −3.028(0.078) −2.433(0.105) 19.455(0.021)

Table	1	– Function fitted on	an	observational sample of	fundamentalmode	Cepheids of	M31	
by	Kodric et	al. (2015)	for	the	F110W	filter.

3.	Statistical	tools

Figure 3 – A simulated sample of𝑛 = 200 objects, with two continuous linear function of slope
𝑎/ = 3.5 and 𝑎] = 1.5. The breaking point is 𝜏^ = 10. Dashed lines show the breaking points
found for BP (blue), two different uses of bcp (red and black). 𝑦1 and 𝑦2 are the two functions
fitted for the best breakingpoint found.

• The	efficiency	of	the	methods	is	strongly	dependant	on	the	
noise	added.	

• A	perturbation	of	σ = 0.4 gives	to	the	sample	a	dispersion	
similar	to	observations.	

Figure 7 – Breaking points found for Fundamental
Mode Cepheids in the SMC, from OGLE data
(Udalski et al. , 1999). The large distribution of
magnitudes, the presence of outliers and the
small number of stars with 𝑃 > 10	𝑑 (only ~100
in a sample of 1319) can explain the values found.

Figure 8 – Breaking points found for
Fundamental Mode Cepheids, in the LMC,
from MACHO project (2001). The bp method
failed to identify a breaking point while bcp1
and bcp2 found one each but with low
confidence. In this sample also, the strong
dispersion of data and the lack of long period
Cepheids are probable explanations.

• Applications of the BP and bcp
methods to real samples give mixed
results.

• With Kodric et al. (2015), the BP
method finds a breaking point at
P ≈ 6.9	d and the bcp methods at
P ≈ 17	d (figure 6).

• With Udalski et al. (1999), a breaking
point is found by all methods at
𝑃 ≈ 5.6	𝑑 (figure 7).

• Using data from the MACHO project
(2001), the method bcp1 find a
breaking point at 𝑃 ≈ 4.5	𝑑 and bcp2
at 𝑃 ≈ 5.6	𝑑 (figure 8).

• All samples show a large distribution
of values of magnitudes and an
unbalanced number of stars on each
side of the 𝑃 = 10	𝑑 expected
breaking point. Fitting functions on
each side of the breaking points
found fail to offer a better description
of the function than the regular linear
function.

• Both BP and bcp methods have shown efficiency in the simulated
data up to 𝜎 = 0.4.

• Both BP and bcp methods behaved as expected on the chosen
samples of observational data. There is a strong need for caution,
since the breaking points found may have different origins than the
non-linearity of the LL in these specific cases.

• These statistical methods require further investigation as the
accuracy of photometric measurements and calculation of Cepheids
periods are constantly improving.

• Future work will include:
i. A more refined selecting protocol for samples of stars.
ii. Investigation of more breaking point algorithms.
iii. Experimenting on the most recent data from the POMME survey

which contains a larger sample of stars with high photometric
accuracy.

Figure 6 – Breaking points found for
Fundamental Mode Cepheids in M31 (Kodric
et al. , 2015). It is important to note that
while the mean value of breaking point found
by bcp is close to 1.25 , bcp finds also
significant posterior probabilities for a
breaking point nearing 0.85, hence we decide
to use the value found by BP to build our
fitting functions.

Figure 5 – The uncertainty on the breaking
point value grows significantly with respect to
the sigma added to the simulated samples.
While the bcp methods have lower accuracy
than the BP method at small sigma, bcp1 show
a particularly strong rise in uncertainty at
higher values of sigma.

I.	Parallax	
in	Milky	
Way

II.	Cepheids
in	local	
Universe

III.	Type	Ia
supernovae	
in	distant	
galaxies

Hubble	
constant


