SF2A Lyon 14-06-2016 ## From stellar evolution to tidal interaction impact on planetary habitability **Florian Gallet** Corinne Charbonnel(Geneva), Louis Amard (LUPM/Geneva), Stephane Mathis (AIM Paris-Saclay), Emeline Bolmont (Namur), Ana Palacios (LUPM), Sacha Brun (AIM Paris-Saclay), #### **SF2A Lyon 14-06-2016** ## From stellar evolution to tidal interaction impact on planetary habitability **Florian Gallet** Corinne Charbonnel(Geneva), Louis Amard (LUPM/Geneva), Stephane Mathis (AIM Paris-Saclay), Emeline Bolmont (Namur), Ana Palacios (LUPM), Sacha Brun (AIM Paris-Saclay), #### **STAREVOL** Follow evolution of main stellar quantities: - Radius - Mass - T_{eff} - L* - Ω_* - internal structure **Include a full** and self consistent treatment of rotation See Lagarde et al. (2012) and Amard et al. (2016) for more details Kopparapu et al. (2013) $$S_{eff} = S_{eff \odot} + aT_* + bT_*^2 + cT_*^3 + \dots$$ 2600 K ≤ T_{eff} ≤ 7200 K $$S_{\text{eff}}$$, a, b, c = f (planet atmosphere) $$S_{\rm eff} = \frac{F_{\rm IR}}{F_{\rm inc}}$$ climate model $$S_{eff} = \frac{F_{IR}}{F_{inc}}$$ $$d = \left(\frac{L/L_{\odot}}{S_{eff}}\right)^{0.5} AU$$ Kasting et al. (1993) - R_{in} = Runaway greenhouse : net positif feedback of GH effect (T_{surf} > 647 K), ocean evaporate entirely - R_{out} = Maximum greenhouse : Rayleigh scattering by CO_2 reduce GH (T_{surf} = 273 K) # From rotation to stellar activity: impact of stellar evolution on F. Gallet¹, C. Charbonnel^{1,2}, L. Amard^{1,4}, S. Brun³, A. Palacios⁴, and S. Mathis³ Department of Astronomy, University of Geneva, Chemin des Maillettes 51, 1290 Versoix, Switzerland Repartment of Astronomy, Université de Toulouse, 14, av. E. Belin E-31400 Toulouse, Economie RAP, UMR 5271, CNRS and Université de Toulouse, 14 IRAP, UMR 5277, CNRS and Université de Toulouse, 14, av. E. Belin, F-31400 Toulouse, France Laboratoire AIM Paris-Saclay, CEA/DRF-Université Paris Diderot-CNRS, IRFU/SAp Centre de Saclay, F-91191 Cif-sur-Yvette, France 4 LUPM, UMR 5299, Université Montpellier/ CNRS, Montpellier, France Received / Accepted ### Habitable Zone - 1) HZ prescriptions => small - Stellar models (i.e. input micro-physics) => small - Stellar mass => dramatic effect on HZ - **Metallicity => dramatic effect on HZ** - Stellar rotation => marginal effect - **Stellar activity => depends on the mass** ## From rotation to stellar activity: impact of stellar evolution on F. Gallet¹, C. Charbonnel^{1,2}, L. Amard^{1,4}, S. Brun³, A. Palacios⁴, and S. Mathis³ Department of Astronomy, University of Geneva, Chemin des Maillettes 51, 1290 Versoix, Switzerland Department of Astronomy, University of Geneva, Chemin des Maillettes 51, 1290 Versoix, Switzerland E. Belin, F-31400 Toulouse, France IRAP, UMR 5277, CNRS and Université de Toulouse, 14, av. E. Belin, F-31400 Toulouse, Centre de Saclay, F-91191 Gif-sur-Yvette, Laboratoire AIM Paris-Saclay, CEA/DRF-Université Paris Diderot-CNRS, IRFU/SAp Centre de Saclay, F-91191 Gif-sur-Yvette, Laboratoire AIM Paris-Saclay, CEA/DRF-Université Paris France 4 LUPM, UMR 5299, Université Montpellier/ CNRS, Montpellier, France Received / Accepted # From rotation to stellar activity: impact of stellar evolution on F. Gallet¹, C. Charbonnel^{1,2}, L. Amard^{1,4}, S. Brun³, A. Palacios⁴, and S. Mathis³ Department of Astronomy, University of Geneva, Chemin des Maillettes 51, 1290 Versoix, Switzerland Repartment of Astronomy, Université de Toulouse, 14, av. E. Belin E-31400 Toulouse, Economie RAP, UMR 5271, CNRS and Université de Toulouse, 14 IRAP, UMR 5277, CNRS and Université de Toulouse, 14, av. E. Belin, F-31400 Toulouse, France Laboratoire AIM Paris-Saclay, CEA/DRF-Université Paris Diderot-CNRS, IRFU/SAp Centre de Saclay, F-91191 Cif-sur-Yvette, France 4 LUPM, UMR 5299, Université Montpellier/ CNRS, Montpellier, France Received / Accepted ### Habitable Zone - 1) HZ prescriptions => small - Stellar models (i.e. input micro-physics) => small - Stellar mass => dramatic effect on HZ - **Metallicity => dramatic effect on HZ** - Stellar rotation => marginal effect - **Stellar activity => depends on the mass** # From rotation to stellar activity: impact of stellar evolution on F. Gallet¹, C. Charbonnel^{1,2}, L. Amard^{1,4}, S. Brun³, A. Palacios⁴, and S. Mathis³ Department of Astronomy, University of Geneva, Chemin des Maillettes 51, 1290 Versoix, Switzerland Repartment of Astronomy, Université de Toulouse, 14, av. E. Belin E-31400 Toulouse, Economie RAP, UMR 5271, CNRS and Université de Toulouse, 14 IRAP, UMR 5277, CNRS and Université de Toulouse, 14, av. E. Belin, F-31400 Toulouse, France Laboratoire AIM Paris-Saclay, CEA/DRF-Université Paris Diderot-CNRS, IRFU/SAp Centre de Saclay, F-91191 Cif-sur-Yvette, France 4 LUPM, UMR 5299, Université Montpellier/ CNRS, Montpellier, France Received / Accepted ### Habitable Zone - 1) HZ prescriptions => small - Stellar models (i.e. input micro-physics) => small - Stellar mass => dramatic effect on HZ - **Metallicity => dramatic effect on HZ** - Stellar rotation => marginal effect - **Stellar activity => depends on the mass** # From rotation to stellar activity: impact of stellar evolution on F. Gallet¹, C. Charbonnel^{1,2}, L. Amard^{1,4}, S. Brun³, A. Palacios⁴, and S. Mathis³ Department of Astronomy, University of Geneva, Chemin des Maillettes 51, 1290 Versoix, Switzerland Repartment of Astronomy, Université de Toulouse, 14, av. E. Belin E-31400 Toulouse, Economie RAP, UMR 5271, CNRS and Université de Toulouse, 14 IRAP, UMR 5277, CNRS and Université de Toulouse, 14, av. E. Belin, F-31400 Toulouse, France Laboratoire AIM Paris-Saclay, CEA/DRF-Université Paris Diderot-CNRS, IRFU/SAp Centre de Saclay, F-91191 Cif-sur-Yvette, France 4 LUPM, UMR 5299, Université Montpellier/ CNRS, Montpellier, France Received / Accepted ### Habitable Zone - 1) HZ prescriptions => small - Stellar models (i.e. input micro-physics) => small - Stellar mass => dramatic effect on HZ - **Metallicity => dramatic effect on HZ** - Stellar rotation => marginal effect - **Stellar activity => depends on the mass** # From rotation to stellar activity: impact of stellar evolution on F. Gallet¹, C. Charbonnel^{1,2}, L. Amard^{1,4}, S. Brun³, A. Palacios⁴, and S. Mathis³ Department of Astronomy, University of Geneva, Chemin des Maillettes 51, 1290 Versoix, Switzerland Department of Astronomy, University of Geneva, Chemin des Maillettes 51, 1290 Versoix, Switzerland France Laboratoire AIM Paris-Saclay, CEA/DRF-Université Paris Diderot-CNRS, IRFU/SAp Centre de Saclay, F-91191 Gif-sur-Yvette, Laboratoire AIM Paris-Saclay, CEA/DRF-Université Paris Diderot-CNRS, IRFU/SAp Centre de Saclay, F-91191 Gif-sur-Yvette, France 4 LUPM, UMR 5299, Université Montpellier/ CNRS, Montpellier, France Received / Accepted ### Habitable Zone # From rotation to stellar activity: impact of stellar evolution on F. Gallet¹, C. Charbonnel^{1,2}, L. Amard^{1,4}, S. Brun³, A. Palacios⁴, and S. Mathis³ Department of Astronomy, University of Geneva, Chemin des Maillettes 51, 1290 Versoix, Switzerland Repartment of Astronomy, Université de Toulouse, 14, av. E. Belin E-31400 Toulouse, Economie RAP, UMR 5271, CNRS and Université de Toulouse, 14 IRAP, UMR 5277, CNRS and Université de Toulouse, 14, av. E. Belin, F-31400 Toulouse, France Laboratoire AIM Paris-Saclay, CEA/DRF-Université Paris Diderot-CNRS, IRFU/SAp Centre de Saclay, F-91191 Cif-sur-Yvette, France 4 LUPM, UMR 5299, Université Montpellier/ CNRS, Montpellier, France Received / Accepted Habitable Zone - 1) HZ prescriptions => small - Stellar models (i.e. input micro-physics) => small - Stellar mass => dramatic effect on HZ - **Metallicity => dramatic effect on HZ** - Stellar rotation => marginal effect - **Stellar activity => depends on the mass** ### Stellar activity $$\tau_{g} = \int_{R_{b}}^{R_{b}} \frac{dr}{Vc(r)}$$ $$Ro_{g} = \frac{P_{rot}}{\tau_{g}}$$ < 1 = stellar activity High stellar activity during the early PMS when HZL closest for from the star Magnetic protection? Gallet et al. (submitted) ### Magnetic protection Minimum magnetic field required for magnetic protection $$B_p^{\rm min} \propto B_* R_*^2$$ Vidotto et al. (2013) $B_* \approx Ro^{-1}$ But planet fixed at 1 AU! => orbital evolution?? Tides?? ### Tidal dissipation With the courtesy of Dr Bolmont and Dr Mathis **Dissipation spectra** Tidal formalism currently too heavy to be implemented inside secular code! Order of magnitude of tidal dissipation along stellar evolution => frequency-averaged dissipation and equivalent tidal quality factor The tidal quality factor Q is an estimation of the respond of a given object to tidal distortion $$\frac{3}{2\overline{Q'}} = \frac{k_2}{\overline{Q}} = Dissipation = \frac{100\pi}{63} \epsilon^2 \left(\frac{\alpha^5}{1-\alpha^5}\right) (1-\gamma)^2$$ $$\times (1-\alpha)^4 \left(1+2\alpha+3\alpha^2+\frac{3}{2}\alpha^3\right)^2 \left[1+\left(\frac{1-\gamma}{\gamma}\right)\alpha^3\right] \left[1+\frac{3}{2}\gamma+\frac{5}{2\gamma}\left(1+\frac{1}{2}\gamma-\frac{3}{2}\gamma^2\right)\alpha^3-\frac{9}{4}(1-\gamma)\alpha^5\right]^{-2}$$ with $$\begin{cases} \alpha = \frac{R_{\rm c}}{R_{\rm s}}, \quad \beta = \frac{M_{\rm c}}{M_{\rm s}} \quad \text{and} \quad \gamma = \frac{\rho_{\rm c}}{\rho_{\rm c}} = \frac{\alpha^3 \, (1 - \beta)}{\beta \, (1 - \alpha^3)} < 1. \\ \epsilon^2 \equiv \left(\Omega/\sqrt{G M_{\rm s}/R_{\rm s}^3}\right)^2 = (\Omega/\Omega_{\rm c})^2 \ll 1 \end{cases}$$ rotation **Ogilvie 2013; Mathis 2015** ## Grid of tidal quality factor - Variation over several order of magnitude: - amplitude on MS increases with mass (thickness of the CE) - importance of coupling structural and rotational evolution Dissipation Idal quality factor Q' in the convertive envelope of rotating and the convertical and the convertible $\frac{3}{2\overline{Q'}} = \frac{k_2}{\overline{Q}} = \int_{-\infty}^{+\infty} \operatorname{Im}\left[k_2^2(\omega)\right] \frac{\mathrm{d}\omega}{\omega} = \left\langle \operatorname{Im}\left[k_2^2(\omega)\right] \right\rangle_{\omega} = \frac{100\pi}{63} \frac{1}{\epsilon^2} \left(\frac{\alpha^5}{1-\alpha^5}\right) (1-\gamma)^2$ $\times (1-\alpha)^4 \left(1+2\alpha+3\alpha^2+\frac{3}{2}\alpha^3\right)^2 \left[1+\left(\frac{1-\gamma}{\gamma}\right)\alpha^3\right] \left[1+\frac{3}{2}\gamma+\frac{5}{2\gamma}\left(1+\frac{1}{2}\gamma-\frac{3}{2}\gamma^2\right)\alpha^3-\frac{9}{4}(1-\gamma)\alpha^5\right]^{-2}$ with $\begin{cases} \alpha = \frac{R_{\rm c}}{R_{\rm s}}, \quad \beta = \frac{M_{\rm c}}{M_{\rm s}} \quad \text{and} \quad \gamma = \frac{\rho_{\rm c}}{\rho_{\rm c}} = \frac{\alpha^3(1-\beta)}{\beta(1-\alpha^3)} < 1. \quad \text{structure} \\ \epsilon^2 \equiv \left(\Omega/\sqrt{\mathcal{G}M_{\rm s}/R_{\rm s}^3}\right)^2 = (\Omega/\Omega_{\rm c})^2 \ll 1 \quad \text{rotation} \end{cases}$ Mathis (2015) & Gallet, Mathis, Charbonnel, Amard (in prep.) ### Grid of tidal quality factor - Variation over several order of magnitude: - Tidal quality factor Q' in the convective envelope of rotating amplitude on MS increases with mass (thickness of the CE) - importance of coupling structural and rotational evolution ssipation $$\begin{split} \frac{3}{2\overline{Q'}} &= \frac{k_2}{\overline{Q}} = \int_{-\infty}^{+\infty} \operatorname{Im}\left[k_2^2(\omega)\right] \frac{\mathrm{d}\omega}{\omega} = \left\langle \operatorname{Im}\left[k_2^2(\omega)\right] \right\rangle_{\omega} = \frac{100\pi}{63} \epsilon^2 \left(\frac{\alpha^5}{1-\alpha^5}\right) (1-\gamma)^2 \\ &\times (1-\alpha)^4 \left(1+2\alpha+3\alpha^2+\frac{3}{2}\alpha^3\right)^2 \left[1+\left(\frac{1-\gamma}{\gamma}\right)\alpha^3\right] \left[1+\frac{3}{2}\gamma+\frac{5}{2\gamma}\left(1+\frac{1}{2}\gamma-\frac{3}{2}\gamma^2\right)\alpha^3-\frac{9}{4}(1-\gamma)\alpha^5\right]^{-2} \\ &\text{with} \quad \left\{ \begin{array}{c} \alpha = \frac{R_{\rm c}}{R_{\rm s}}, \quad \beta = \frac{M_{\rm c}}{M_{\rm s}} \quad \text{and} \quad \gamma = \frac{\rho_{\rm c}}{\rho_{\rm c}} = \frac{\alpha^3(1-\beta)}{\beta(1-\alpha^3)} < 1. \quad \text{structure} \\ \epsilon^2 \equiv \left(\Omega/\sqrt{\mathcal{G}M_{\rm s}/R_{\rm s}^3}\right)^2 = (\Omega/\Omega_{\rm c})^2 \ll 1 \quad \text{rotation} \\ \end{array} \right. \end{split}$$ **Structural** evolution **Structure** + rotational evolution Mathis (2015) & Gallet, Mathis, Charbonnel, Amard (in prep.) ### Tidal interaction modeling with Q' = cst **Standard tides model** Model Bolmont & Mathis with averaged dissipation \triangle non-rotating stellar model $M_p=\,10\,\,M_\oplus$ $M \star = 1 M_{\odot}$ $P_{\star,i} = 1.2 \text{ day}$ **Bolmont & Mathis (2016)** **Ad-hoc stellar rotation!** Tides will both affect rotation and internal structure => need to include a real retroaction of the rotation on the internal structure due to tides! ### Conclusion/Perspective - Couple STAREVOL to secular orbital evolution code to get the impact of tides on rotation and structure as well as planetary migration => collaboration with E. Bolmont and S. Mathis - Provide the community with stellar grids for HZ and tidal dissipation - ☐ Mass and metallicity control HZ evolution - => require precise estimation of M_* and Fe/H - □ Stellar models should be used to get HZ evolution - estimation of CHZ / duration of planet inside HZ? - tidal evolution? #### obswww.unige.ch/Recherche/evol/starevol/HZcalculator.php #### **Beta HZ online tool available** we will provide stellar grids and other visualisation tools | Please enter the stellar mass and chose your favorite HZ prescription | |---| | Rotation ? (not implemented yet) Yes No | | No rotation | | ■ Kopparapu ○ Selsis ○ Underwood | | Stellar mass = 1.0 : Planet location (AU) ? 2 Age (yr) ? 1e6 CHZ ? • yes • no Trace | | Selected mass = 1 M _☉ Metallicity = Z _☉ Prescription = Kopparapu et al. 2014 | | 12 (AU) 2H | | Log time (yr) | | Red cross = outside the habitable zone
Blue cross = inside the habitable zone | | Time in HZ _{in} 3.74 Myr - Time out HZ _{in} 4.77 Gyr
Time in HZ _{out} 1.76 Myr - Time out HZ _{out} 10.67 Gyr
HZ _{in} 0.95 AU - HZ _{out} 1.33 AU | ### Tidal H-R diagram Mathis (2015) & Gallet, Mathis, Charbonnel, & Amard (2016)