

#### **SF2A Lyon 14-06-2016**





## From stellar evolution to tidal interaction impact on planetary habitability

**Florian Gallet** 

Corinne Charbonnel(Geneva), Louis Amard (LUPM/Geneva), Stephane Mathis (AIM Paris-Saclay), Emeline Bolmont (Namur), Ana Palacios (LUPM), Sacha Brun (AIM Paris-Saclay),



#### **SF2A Lyon 14-06-2016**





## From stellar evolution to tidal interaction impact on planetary habitability

**Florian Gallet** 

Corinne Charbonnel(Geneva), Louis Amard (LUPM/Geneva), Stephane Mathis (AIM Paris-Saclay), Emeline Bolmont (Namur), Ana Palacios (LUPM), Sacha Brun (AIM Paris-Saclay),

#### **STAREVOL**

Follow evolution of main stellar quantities:

- Radius
- Mass
- T<sub>eff</sub>
- L\*
- $\Omega_*$
- internal structure

**Include a full** and self consistent treatment of

rotation



See Lagarde et al. (2012) and Amard et al. (2016) for more details

Kopparapu et al. (2013)

$$S_{eff} = S_{eff \odot} + aT_* + bT_*^2 + cT_*^3 + \dots$$

2600 K ≤  $T_{eff}$  ≤ 7200 K

$$S_{\text{eff}}$$
, a, b, c =  $f$ (planet atmosphere)

$$S_{\rm eff} = \frac{F_{\rm IR}}{F_{\rm inc}}$$

climate model

$$S_{eff} = \frac{F_{IR}}{F_{inc}}$$

$$d = \left(\frac{L/L_{\odot}}{S_{eff}}\right)^{0.5} AU$$

Kasting et al. (1993)



- $R_{in}$  = Runaway greenhouse : net positif feedback of GH effect ( $T_{surf}$  > 647 K), ocean evaporate entirely
- $R_{out}$  = Maximum greenhouse : Rayleigh scattering by  $CO_2$  reduce GH ( $T_{surf}$  = 273 K)

# From rotation to stellar activity: impact of stellar evolution on

F. Gallet<sup>1</sup>, C. Charbonnel<sup>1,2</sup>, L. Amard<sup>1,4</sup>, S. Brun<sup>3</sup>, A. Palacios<sup>4</sup>, and S. Mathis<sup>3</sup>

 Department of Astronomy, University of Geneva, Chemin des Maillettes 51, 1290 Versoix, Switzerland
 Repartment of Astronomy, Université de Toulouse, 14, av. E. Belin E-31400 Toulouse, Economie
 RAP, UMR 5271, CNRS and Université de Toulouse, 14 IRAP, UMR 5277, CNRS and Université de Toulouse, 14, av. E. Belin, F-31400 Toulouse, France
 Laboratoire AIM Paris-Saclay, CEA/DRF-Université Paris Diderot-CNRS, IRFU/SAp Centre de Saclay, F-91191 Cif-sur-Yvette,

France

4 LUPM, UMR 5299, Université Montpellier/ CNRS, Montpellier, France

Received / Accepted

### Habitable Zone

- 1) HZ prescriptions => small
- Stellar models (i.e. input micro-physics) => small
- Stellar mass => dramatic effect on HZ
- **Metallicity => dramatic effect on HZ**
- Stellar rotation => marginal effect
- **Stellar activity => depends on the mass**

## From rotation to stellar activity: impact of stellar evolution on F. Gallet<sup>1</sup>, C. Charbonnel<sup>1,2</sup>, L. Amard<sup>1,4</sup>, S. Brun<sup>3</sup>, A. Palacios<sup>4</sup>, and S. Mathis<sup>3</sup>

Department of Astronomy, University of Geneva, Chemin des Maillettes 51, 1290 Versoix, Switzerland
 Department of Astronomy, University of Geneva, Chemin des Maillettes 51, 1290 Versoix, Switzerland
 E. Belin, F-31400 Toulouse, France
 IRAP, UMR 5277, CNRS and Université de Toulouse, 14, av. E. Belin, F-31400 Toulouse, Centre de Saclay, F-91191 Gif-sur-Yvette,
 Laboratoire AIM Paris-Saclay, CEA/DRF-Université Paris Diderot-CNRS, IRFU/SAp Centre de Saclay, F-91191 Gif-sur-Yvette,
 Laboratoire AIM Paris-Saclay, CEA/DRF-Université Paris

France
4 LUPM, UMR 5299, Université Montpellier/ CNRS, Montpellier, France

Received / Accepted





# From rotation to stellar activity: impact of stellar evolution on

F. Gallet<sup>1</sup>, C. Charbonnel<sup>1,2</sup>, L. Amard<sup>1,4</sup>, S. Brun<sup>3</sup>, A. Palacios<sup>4</sup>, and S. Mathis<sup>3</sup>

 Department of Astronomy, University of Geneva, Chemin des Maillettes 51, 1290 Versoix, Switzerland
 Repartment of Astronomy, Université de Toulouse, 14, av. E. Belin E-31400 Toulouse, Economie
 RAP, UMR 5271, CNRS and Université de Toulouse, 14 IRAP, UMR 5277, CNRS and Université de Toulouse, 14, av. E. Belin, F-31400 Toulouse, France
 Laboratoire AIM Paris-Saclay, CEA/DRF-Université Paris Diderot-CNRS, IRFU/SAp Centre de Saclay, F-91191 Cif-sur-Yvette,

France

4 LUPM, UMR 5299, Université Montpellier/ CNRS, Montpellier, France

Received / Accepted

### Habitable Zone

- 1) HZ prescriptions => small
- Stellar models (i.e. input micro-physics) => small
- Stellar mass => dramatic effect on HZ
- **Metallicity => dramatic effect on HZ**
- Stellar rotation => marginal effect
- **Stellar activity => depends on the mass**



# From rotation to stellar activity: impact of stellar evolution on

F. Gallet<sup>1</sup>, C. Charbonnel<sup>1,2</sup>, L. Amard<sup>1,4</sup>, S. Brun<sup>3</sup>, A. Palacios<sup>4</sup>, and S. Mathis<sup>3</sup>

 Department of Astronomy, University of Geneva, Chemin des Maillettes 51, 1290 Versoix, Switzerland
 Repartment of Astronomy, Université de Toulouse, 14, av. E. Belin E-31400 Toulouse, Economie
 RAP, UMR 5271, CNRS and Université de Toulouse, 14 IRAP, UMR 5277, CNRS and Université de Toulouse, 14, av. E. Belin, F-31400 Toulouse, France
 Laboratoire AIM Paris-Saclay, CEA/DRF-Université Paris Diderot-CNRS, IRFU/SAp Centre de Saclay, F-91191 Cif-sur-Yvette,

France

4 LUPM, UMR 5299, Université Montpellier/ CNRS, Montpellier, France

Received / Accepted

### Habitable Zone

- 1) HZ prescriptions => small
- Stellar models (i.e. input micro-physics) => small
- Stellar mass => dramatic effect on HZ
- **Metallicity => dramatic effect on HZ**
- Stellar rotation => marginal effect
- **Stellar activity => depends on the mass**

# From rotation to stellar activity: impact of stellar evolution on

F. Gallet<sup>1</sup>, C. Charbonnel<sup>1,2</sup>, L. Amard<sup>1,4</sup>, S. Brun<sup>3</sup>, A. Palacios<sup>4</sup>, and S. Mathis<sup>3</sup>

 Department of Astronomy, University of Geneva, Chemin des Maillettes 51, 1290 Versoix, Switzerland
 Repartment of Astronomy, Université de Toulouse, 14, av. E. Belin E-31400 Toulouse, Economie
 RAP, UMR 5271, CNRS and Université de Toulouse, 14 IRAP, UMR 5277, CNRS and Université de Toulouse, 14, av. E. Belin, F-31400 Toulouse, France
 Laboratoire AIM Paris-Saclay, CEA/DRF-Université Paris Diderot-CNRS, IRFU/SAp Centre de Saclay, F-91191 Cif-sur-Yvette,

France

4 LUPM, UMR 5299, Université Montpellier/ CNRS, Montpellier, France

Received / Accepted

### Habitable Zone

- 1) HZ prescriptions => small
- Stellar models (i.e. input micro-physics) => small
- Stellar mass => dramatic effect on HZ
- **Metallicity => dramatic effect on HZ**
- Stellar rotation => marginal effect
- **Stellar activity => depends on the mass**

# From rotation to stellar activity: impact of stellar evolution on

F. Gallet<sup>1</sup>, C. Charbonnel<sup>1,2</sup>, L. Amard<sup>1,4</sup>, S. Brun<sup>3</sup>, A. Palacios<sup>4</sup>, and S. Mathis<sup>3</sup>

Department of Astronomy, University of Geneva, Chemin des Maillettes 51, 1290 Versoix, Switzerland
 Department of Astronomy, University of Geneva, Chemin des Maillettes 51, 1290 Versoix, Switzerland
 France
 Laboratoire AIM Paris-Saclay, CEA/DRF-Université Paris Diderot-CNRS, IRFU/SAp Centre de Saclay, F-91191 Gif-sur-Yvette,
 Laboratoire AIM Paris-Saclay, CEA/DRF-Université Paris Diderot-CNRS, IRFU/SAp Centre de Saclay, F-91191 Gif-sur-Yvette,

France
4 LUPM, UMR 5299, Université Montpellier/ CNRS, Montpellier, France

Received / Accepted



### Habitable Zone



# From rotation to stellar activity: impact of stellar evolution on

F. Gallet<sup>1</sup>, C. Charbonnel<sup>1,2</sup>, L. Amard<sup>1,4</sup>, S. Brun<sup>3</sup>, A. Palacios<sup>4</sup>, and S. Mathis<sup>3</sup>

 Department of Astronomy, University of Geneva, Chemin des Maillettes 51, 1290 Versoix, Switzerland
 Repartment of Astronomy, Université de Toulouse, 14, av. E. Belin E-31400 Toulouse, Economie
 RAP, UMR 5271, CNRS and Université de Toulouse, 14 IRAP, UMR 5277, CNRS and Université de Toulouse, 14, av. E. Belin, F-31400 Toulouse, France
 Laboratoire AIM Paris-Saclay, CEA/DRF-Université Paris Diderot-CNRS, IRFU/SAp Centre de Saclay, F-91191 Cif-sur-Yvette,

France

4 LUPM, UMR 5299, Université Montpellier/ CNRS, Montpellier, France

Received / Accepted

Habitable Zone

- 1) HZ prescriptions => small
- Stellar models (i.e. input micro-physics) => small
- Stellar mass => dramatic effect on HZ
- **Metallicity => dramatic effect on HZ**
- Stellar rotation => marginal effect
- **Stellar activity => depends on the mass**

### Stellar activity

$$\tau_{g} = \int_{R_{b}}^{R_{b}} \frac{dr}{Vc(r)}$$

$$Ro_{g} = \frac{P_{rot}}{\tau_{g}}$$

< 1 = stellar activity

High stellar activity during the early PMS when HZL closest for from the star



Magnetic protection?







Gallet et al. (submitted)

### Magnetic protection



Minimum magnetic field required for magnetic protection

$$B_p^{\rm min} \propto B_* R_*^2$$
 Vidotto et al. (2013)



 $B_* \approx Ro^{-1}$ 



But planet fixed at 1 AU! => orbital evolution?? Tides??

### Tidal dissipation

With the courtesy of Dr Bolmont and Dr Mathis

**Dissipation spectra** 

Tidal formalism currently too heavy to be implemented inside secular code!



Order of magnitude of tidal dissipation along stellar evolution

=> frequency-averaged dissipation and equivalent tidal quality factor

The tidal quality factor Q is an estimation of the respond of a given object to tidal distortion

$$\frac{3}{2\overline{Q'}} = \frac{k_2}{\overline{Q}} = Dissipation = \frac{100\pi}{63} \epsilon^2 \left(\frac{\alpha^5}{1-\alpha^5}\right) (1-\gamma)^2$$

$$\times (1-\alpha)^4 \left(1+2\alpha+3\alpha^2+\frac{3}{2}\alpha^3\right)^2 \left[1+\left(\frac{1-\gamma}{\gamma}\right)\alpha^3\right] \left[1+\frac{3}{2}\gamma+\frac{5}{2\gamma}\left(1+\frac{1}{2}\gamma-\frac{3}{2}\gamma^2\right)\alpha^3-\frac{9}{4}(1-\gamma)\alpha^5\right]^{-2}$$

with 
$$\begin{cases} \alpha = \frac{R_{\rm c}}{R_{\rm s}}, \quad \beta = \frac{M_{\rm c}}{M_{\rm s}} \quad \text{and} \quad \gamma = \frac{\rho_{\rm c}}{\rho_{\rm c}} = \frac{\alpha^3 \, (1 - \beta)}{\beta \, (1 - \alpha^3)} < 1. \\ \epsilon^2 \equiv \left(\Omega/\sqrt{G M_{\rm s}/R_{\rm s}^3}\right)^2 = (\Omega/\Omega_{\rm c})^2 \ll 1 \end{cases}$$
rotation

**Ogilvie 2013; Mathis 2015** 

## Grid of tidal quality factor

- Variation over several order of magnitude:
  - amplitude on MS increases with mass (thickness of the CE)
  - importance of coupling structural and rotational evolution

Dissipation



Idal quality factor Q' in the convertive envelope of rotating and the convertical and the convertible and

 $\frac{3}{2\overline{Q'}} = \frac{k_2}{\overline{Q}} = \int_{-\infty}^{+\infty} \operatorname{Im}\left[k_2^2(\omega)\right] \frac{\mathrm{d}\omega}{\omega} = \left\langle \operatorname{Im}\left[k_2^2(\omega)\right] \right\rangle_{\omega} = \frac{100\pi}{63} \frac{1}{\epsilon^2} \left(\frac{\alpha^5}{1-\alpha^5}\right) (1-\gamma)^2$   $\times (1-\alpha)^4 \left(1+2\alpha+3\alpha^2+\frac{3}{2}\alpha^3\right)^2 \left[1+\left(\frac{1-\gamma}{\gamma}\right)\alpha^3\right] \left[1+\frac{3}{2}\gamma+\frac{5}{2\gamma}\left(1+\frac{1}{2}\gamma-\frac{3}{2}\gamma^2\right)\alpha^3-\frac{9}{4}(1-\gamma)\alpha^5\right]^{-2}$ with  $\begin{cases} \alpha = \frac{R_{\rm c}}{R_{\rm s}}, \quad \beta = \frac{M_{\rm c}}{M_{\rm s}} \quad \text{and} \quad \gamma = \frac{\rho_{\rm c}}{\rho_{\rm c}} = \frac{\alpha^3(1-\beta)}{\beta(1-\alpha^3)} < 1. \quad \text{structure} \\ \epsilon^2 \equiv \left(\Omega/\sqrt{\mathcal{G}M_{\rm s}/R_{\rm s}^3}\right)^2 = (\Omega/\Omega_{\rm c})^2 \ll 1 \quad \text{rotation} \end{cases}$ 

Mathis (2015) & Gallet, Mathis, Charbonnel, Amard (in prep.)

### Grid of tidal quality factor

- Variation over several order of magnitude:
- Tidal quality factor Q' in the convective envelope of rotating amplitude on MS increases with mass (thickness of the CE)
  - importance of coupling structural and rotational evolution

ssipation



$$\begin{split} \frac{3}{2\overline{Q'}} &= \frac{k_2}{\overline{Q}} = \int_{-\infty}^{+\infty} \operatorname{Im}\left[k_2^2(\omega)\right] \frac{\mathrm{d}\omega}{\omega} = \left\langle \operatorname{Im}\left[k_2^2(\omega)\right] \right\rangle_{\omega} = \frac{100\pi}{63} \epsilon^2 \left(\frac{\alpha^5}{1-\alpha^5}\right) (1-\gamma)^2 \\ &\times (1-\alpha)^4 \left(1+2\alpha+3\alpha^2+\frac{3}{2}\alpha^3\right)^2 \left[1+\left(\frac{1-\gamma}{\gamma}\right)\alpha^3\right] \left[1+\frac{3}{2}\gamma+\frac{5}{2\gamma}\left(1+\frac{1}{2}\gamma-\frac{3}{2}\gamma^2\right)\alpha^3-\frac{9}{4}(1-\gamma)\alpha^5\right]^{-2} \\ &\text{with} \quad \left\{ \begin{array}{c} \alpha = \frac{R_{\rm c}}{R_{\rm s}}, \quad \beta = \frac{M_{\rm c}}{M_{\rm s}} \quad \text{and} \quad \gamma = \frac{\rho_{\rm c}}{\rho_{\rm c}} = \frac{\alpha^3(1-\beta)}{\beta(1-\alpha^3)} < 1. \quad \text{structure} \\ \epsilon^2 \equiv \left(\Omega/\sqrt{\mathcal{G}M_{\rm s}/R_{\rm s}^3}\right)^2 = (\Omega/\Omega_{\rm c})^2 \ll 1 \quad \text{rotation} \\ \end{array} \right. \end{split}$$

**Structural** evolution

**Structure** + rotational evolution

Mathis (2015) & Gallet, Mathis, Charbonnel, Amard (in prep.)

### Tidal interaction modeling



with Q' = cst

**Standard tides model** 

Model Bolmont & Mathis with averaged dissipation

 $\triangle$ 

non-rotating stellar model

 $M_p=\,10\,\,M_\oplus$ 



 $M \star = 1 M_{\odot}$ 

 $P_{\star,i} = 1.2 \text{ day}$ 

**Bolmont & Mathis (2016)** 

**Ad-hoc stellar rotation!** 

Tides will both affect rotation and internal structure => need to include a real retroaction of the rotation on the internal structure due to tides!

### Conclusion/Perspective

- Couple STAREVOL to secular orbital evolution code to get the impact of tides on rotation and structure as well as planetary migration => collaboration with E. Bolmont and S. Mathis
- Provide the community with stellar grids for HZ and tidal dissipation
- ☐ Mass and metallicity control HZ evolution
  - => require precise estimation of  $M_*$  and Fe/H
- □ Stellar models should be used to get HZ evolution
  - estimation of CHZ / duration of planet inside HZ?
  - tidal evolution?

#### obswww.unige.ch/Recherche/evol/starevol/HZcalculator.php



#### **Beta HZ online tool available**

we will provide stellar grids and other visualisation tools

| Please enter the stellar mass and chose your favorite HZ prescription                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rotation ? (not implemented yet) Yes  No                                                                                                                                                                    |
| No rotation                                                                                                                                                                                                 |
| ■ Kopparapu ○ Selsis ○ Underwood                                                                                                                                                                            |
| Stellar mass = 1.0 :  Planet location (AU) ? 2  Age (yr) ? 1e6  CHZ ? • yes • no  Trace                                                                                                                     |
| Selected mass = 1 M <sub>☉</sub> Metallicity = Z <sub>☉</sub> Prescription = Kopparapu et al. 2014                                                                                                          |
| 12 (AU) 2H                                                                                                                                                                                                  |
| Log time (yr)                                                                                                                                                                                               |
| Red cross = outside the habitable zone<br>Blue cross = inside the habitable zone                                                                                                                            |
| Time in HZ <sub>in</sub> 3.74 Myr - Time out HZ <sub>in</sub> 4.77 Gyr<br>Time in HZ <sub>out</sub> 1.76 Myr - Time out HZ <sub>out</sub> 10.67 Gyr<br>HZ <sub>in</sub> 0.95 AU - HZ <sub>out</sub> 1.33 AU |

### Tidal H-R diagram



Mathis (2015) & Gallet, Mathis, Charbonnel, & Amard (2016)