SF2A; ATELIER GÉNÉRAL PNPS

The gaseous protocluster as a product of gravoturbulent interaction: modified local environment for stellar cluster formation?

LEE Yueh-Ning, HENNEBELLE Patrick
SAp, CEA Saclay

SF2A, Lyon — June 14th, 2016

Context

Context

Main difficulties in the interstellar medium

- · Large range of temporal and spatial scales
- Energy equipartition among radiative, thermal, kinetic, magnetic energies and cosmos rays
- Strong coupling between several physical processes
- Difficult to simplify and isolate the problems

Outline

- 1 Star formation environment
- 2 The gaseous protocluster

3 Analytical 2D virial model

4 Toward a universal IMF

Star formation environment

Stars in molecular clouds form

- in isolation
- in filaments
- in clusters Lada & Lada (2003)

Star formation environment

Stars in molecular clouds form

- in isolation
- in filaments
- in clusters Lada & Lada (2003)

Star formation environment

Stars in molecular clouds form

- in isolation
- in filaments
- in clusters Lada & Lada (2003)

The gaseous protocluster

Star forming clumps from molecular and continuum observations

Urquhart+ (2014)

The gaseous protocluster

Star forming clumps from molecular and continuum observations

Larson's relation Hennebelle & Falgarone (2012)

The virial theorem

• momentum equation: $\rho d_t \mathbf{u} = -\rho \nabla \phi$

The virial theorem

- momentum equation: $\rho d_t \mathbf{u} = -\rho \nabla \phi$
- integral over the volume $\int_V \rho d_t \mathbf{u} \cdot \mathbf{r} dV = \int_V -\rho \nabla \phi \cdot \mathbf{r} dV$

The virial theorem

- momentum equation: $\rho d_t \mathbf{u} = -\rho \nabla \phi$
- integral over the volume $\int_V \rho d_t \mathbf{u} \cdot \mathbf{r} dV = \int_V -\rho \nabla \phi \cdot \mathbf{r} dV$
- virial equilibrium: $0 \approx 2E_{\text{kin}} + E_{\text{grav}}$

However, rotation is important!

Spherical symmetry no longer valid.

We choose an oblate cluster of semi-axes ${\it R}$ and ${\it H}$ and separate the integration in two dimensions of the cylindrical coordinate.

$$Mu_{2\mathbf{d}}^2 = M(\frac{j}{R})^2 + M\sigma_r^2 = \frac{GM^2}{R}u_r(\eta)$$

$$Mu_{1d}^2 = M\sigma_z^2 = \frac{GM^2}{R}u_z(\eta)$$

$$\dot{E}_{\rm diss} = \epsilon \dot{E}_{\rm grav} = \epsilon \frac{2\,GM\,\dot{M}}{R} u_g(\eta)$$

Given M, j, \dot{M} , solve for R, η , σ .

Stars do not form uniformly in molecular clouds

- Stars do not form uniformly in molecular clouds
- Observed protocluster mass-size relation successfully reproduced by simulation and model, conditions different from molecular clouds

- Stars do not form uniformly in molecular clouds
- Observed protocluster mass-size relation successfully reproduced by simulation and model, conditions different from molecular clouds
- The gaseous protocluster is in virial equilibrium, so is the sink cluster

- Stars do not form uniformly in molecular clouds
- Observed protocluster mass-size relation successfully reproduced by simulation and model, conditions different from molecular clouds
- The gaseous protocluster is in virial equilibrium, so is the sink cluster
- Analysis of the star formation conditions within the cluster: density PDF, velocity dispersion

- Stars do not form uniformly in molecular clouds
- Observed protocluster mass-size relation successfully reproduced by simulation and model, conditions different from molecular clouds
- The gaseous protocluster is in virial equilibrium, so is the sink cluster
- Analysis of the star formation conditions within the cluster: density PDF, velocity dispersion
- IMF peak prediction from H&C theory (2013) weakly dependent on cluster mass

- Stars do not form uniformly in molecular clouds
- Observed protocluster mass-size relation successfully reproduced by simulation and model, conditions different from molecular clouds
- The gaseous protocluster is in virial equilibrium, so is the sink cluster
- Analysis of the star formation conditions within the cluster: density PDF, velocity dispersion
- IMF peak prediction from H&C theory (2013) weakly dependent on cluster mass
- Towards a more realistic cluster with stellar feedback: jet, ionizing radiation, supernovae

Thank you for your attention