

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

École Doctorale d'Astronomie & Astrophysique d'île-de-France

On the internal rotation of low-mass stars: effect of internal gravity waves generated by penetrative convection

C. Pinçon

2nd year PhD student Supervisors : K. Belkacem and M. J. Goupil

OUTLINE

I- Context II- Excitation of IGW III- Transport of angular momentum

Probing the internal rotation of the stars...

- …using asteroseismology
- Solid-body rotation observed in the solar radiative interior (e.g. Garcia, 2007)
- Observations of evolved stars with CoRoT (2006-2014) and Kepler(2009)

Probing the internal rotation of the stars...

- …using asteroseismology
- Solid-body rotation observed in the solar radiative interior (e.g. Garcia, 2007)
- Observations of evolved stars with CoRoT (2006-2014) and Kepler(2009)

- Core rotation ↓ during the evolution on the RGB to the Red Clump
- ... while it strongly contracts until helium fusion starts (Red Clump).
- Observations in agreement with low rotation rates observed in the white dwarfs (Kawaler et al., 1999).

Probing the internal rotation of the stars...

…using asteroseismology

Solid-body rotation observed in the solar radiative interior (e.g. Garcia, 2007)

Observations of evolved stars with CoRoT (2006-2014) and Kepler(2009)

 Core rotation ↓ during the evolution on the RGB to the Red Clump

- ... while it strongly contracts until helium fusion starts (Red Clump).
- Observations in agreement with low rotation rates observed in the white dwarfs (Kawaler et al., 1999).

⇒ involves angular momentum transport from the core to the envelope

Are the observations predicted by stellar models ?

✓ Discrepancies between models and observations:

- Tranport processes in models : meridional circulation / shear-induced turbulence
- Model predictions 2 orders of magnitude larger than observations (Marques et al., Ceillier et al., 2013).

⇒ Insufficient to explain observations !

- In particular, at the beginning of the subgiant branch where the core starts contracting.
- Solutions ?
- Fossil magnetic field in the core of stars ?
- Internal gravity waves (IGW) ?

Are the observations predicted by stellar models ?

✓ Discrepancies between models and observations:

- Tranport processes in models : meridional circulation / shear-induced turbulence
- Model predictions 2 orders of magnitude larger than observations (Marques et al., Ceillier et al., 2013).

⇒ Insufficient to explain observations !

- In particular, at the beginning of the subgiant branch where the core starts contracting.
- Solutions ?
- Fossil magnetic field in the core of stars ?
 Internal gravity waves (IGW) ?

⇒ Are the IGW able to efficiently slow down the stellar core ?

OUTLINE

I- Context **II- Excitation of IGW** III- Transport of angular momentum

Mechanisms of excitation

⇒ estimate by semianalytical models

Mechanisms of excitation

⇒ estimate by semianalytical models

- Excitation by turbulent pressure
- ★ Kumar et al. (1999) ⇒ rigid solar rotation (Talon, 2002)
 ⇒ insufficient for Subgiants and Red Giants (Fuller, 2014)
- Excitation by penetration of convective plumes
- observed in geophysics (e.g. Townsend, 1966) and numerical simulations (e.g. Dintrans, 2005)
- But a model is still missing for stellar interior

⇒ Are the plume-induced waves able to play a role?

Model of excitation by penetrative convection

 Wave equation + source term = pressure exerted by an ensemble of plumes in a thin region just below the base of the convective zone

$$\frac{\partial \vec{v}}{\partial t} + \frac{1}{\rho} \vec{\nabla} p' - \frac{\rho'}{\rho} \vec{g} = -\frac{1}{\rho} \vec{\nabla} (\rho \vec{V}_p \otimes \vec{V}_p) \qquad (Pinçon, Belkacem, Goupil, 2016)$$

- Hypothesis : incoherent and spatially uniformly distributed plumes
- Plumes description in the driving region :
- Initial velocity and width (Rieutord & Zahn, 1995)
- Velocity profile (Zahn, 1991)
- → *Free parameters* : *plume turnover lifetime (~convective time by the MLT)*
 - filling factor $A \sim 0.1$ (number of plumes)

Model of excitation by penetrative convection

 Wave equation + source term = pressure exerted by an ensemble of plumes in a thin region just below the base of the convective zone

$$\frac{\partial \vec{v}}{\partial t} + \frac{1}{\rho} \vec{\nabla} p' - \frac{\rho'}{\rho} \vec{g} = -\frac{1}{\rho} \vec{\nabla} (\rho \vec{V}_p \otimes \vec{V}_p) \quad (Pinçon, Belkacem, Goupil, 2016)$$
Pressure exerted by plumes

- Hypothesis : incoherent and spatially uniformly distributed plumes
- Plumes description in the driving region :
- Initial velocity and width (Rieutord & Zahn, 1995)
- Velocity profile (Zahn, 1991)
- → *Free parameters* : *plume turnover lifetime (~convective time by the MLT)*
 - filling factor $A \sim 0.1$ (number of plumes)

Model of excitation by penetrative convection

 Wave equation + source term = pressure exerted by an ensemble of plumes in a thin region just below the base of the convective zone

$$\frac{\partial \vec{v}}{\partial t} + \frac{1}{\rho} \vec{\nabla} p' - \frac{\rho'}{\rho} \vec{g} = -\frac{1}{\rho} \vec{\nabla} (\rho \vec{v_p} \otimes \vec{v_p}) \quad (Pinçon, Belkacem, Goupil, 2016)$$
Pressure exerted by plumes

Hypothesis : incoherent and spatially uniformly distributed plumes

Plumes description in the driving region :

- Initial velocity and width (Rieutord & Zahn, 1995)
- Velocity profile (Zahn, 1991)
- ➡ Free parameters : plume turnover lifetime (~convective time by the MLT)
 - filling factor A ~ 0.1 (number of plumes)

Efficiency of the excitation process in the Sun

- Up to 5 times more efficient than turbulent pressure in the Sun
- ➡ Total wave energy flux ~ 1 % of the solar flux at the base of the convective zone

⇒ Ability to transport angular momentum ?

OUTLINE

I- Context II- Excitation of IGW III- Transport of angular momentum

Ability to transport angular momentum in the Sun

- Estimate of the effect of IGW on a given rotation profile
- Local characteristic timescale of the process (advection-diffusion equation)

To compare to the characteristic timescale of evolution/contraction

Ability to transport angular momentum in the Sun

- Estimate of the effect of IGW on a given rotation profile
- Local characteristic timescale of the process (advection-diffusion equation)

Ability to transport angular momentum in the Sun

- Estimate of the effect of IGW on a given rotation profile
- Local characteristic timescale of the process (advection-diffusion equation)

From the subgiants branch to the ascent of the RGB

Fuller et al. (2014)

- ➡ IGW cannot reach the core : H-burning shell ~ barrier...
- ...BUT as for the Sun, not so simple: depends on the excitation and the differential rotation

From the subgiants branch to the ascent of the RGB

Fuller et al. (2014)

- IGW cannot reach the core : H-burning shell ~ barrier...
- ...BUT as for the Sun, not so simple: depends on the excitation and the differential rotation
- Calculations for 1Msun and 1.3Msun models on the subgiant and redgiant branches with IGW excited by penetrative convection

From the subgiants branch to the ascent of the RGB

Fuller et al. (2014)

- IGW cannot reach the core : H-burning shell ~ barrier...
- ...BUT as for the Sun, not so simple: depends on the excitation and the differential rotation
- Calculations for 1Msun and 1.3Msun models on the subgiant and redgiant branches with IGW excited by penetrative convection

2 examples : models M1 and M2

Waves strongly damped near the H-burning shell for δΩ < 12 µHz
 δΩ < 12 µHz in observed Red Giants (Mosser et al., 2012)

- $\sim T_{_{\rm L}}$ increases just above the core and $T_{_{\rm L}} > T_{_{contraction}}$ in the core for all $\delta \Omega <$ 12 μH
- Waves strongly damped near the H-burning shell for $\delta \Omega < 12 \ \mu Hz$
- δΩ < 12 µHz in observed Red Giants (Mosser et al., 2012)
 For the RGB stars : core contraction prevents IGW from modifying the core rotation
- ...BUT IGW damped just near the H-burning shell :
- → Interaction with meridional circulation in the core ? ⇒ need for a complete calculation

✓ Low differential rotation ⇒ Strong damping near the H-burning shell
 ⇒ Waves cannot overcome the « barrier »

- ✓ Low differential rotation ⇒ Strong damping near the H-burning shell
 ⇒ Waves cannot overcome the « barrier »
- Progressive increase of δΩ ⇒ ???

- ✓ Low differential rotation ⇒ Strong damping near the H-burning shell
 ⇒ Waves cannot overcome the « barrier »
- Progressive increase of δΩ ⇒ ???

- ✓ Low differential rotation ⇒ Strong damping near the H-burning shell
 ⇒ Waves cannot overcome the « barrier »
- ✓ Progressive increase of δΩ ⇒ !!!

✓ Low differential rotation ⇒ Strong damping near the H-burning shell
 ⇒ IGW cannot overcome the « barrier »

Progressive increase of δΩ ⇒ above $\delta \Omega > 4 \mu Hz$, IGW cross the barrier
 ⇒ cf difference between prograde and retrograde waves *M* with δΩ

 \Rightarrow threshold value typical for subgiant stars (Deheuvels,2014)

=> It exists a threshold value for the differential rotation above which IGW can modify the core rotation !

Progressive increase of δΩ ⇒ above $\delta \Omega > 4 \mu Hz$, IGW cross the barrier
 ⇒ cf difference between prograde and retrograde waves ✓ with δΩ

 \Rightarrow threshold value typical for subgiant stars (Deheuvels,2014)

=> It exists a threshold value for the differential rotation above which IGW can modify the core rotation !

Progressive increase of δΩ ⇒ above $\delta \Omega > 4 \mu Hz$, IGW cross the barrier
 ⇒ cf difference between prograde and retrograde waves *M* with δΩ

 \Rightarrow threshold value typical for subgiant stars (Deheuvels,2014)

=> It exists a threshold value for the differential rotation above which IGW can modify the core rotation !

Comparison with observations

 Comparison : threshold value from models VS observations in subgiants 1Msun<M<1.5Msun (Deheuvels,2014)

IGW can not cross the barrier

⇒ Regulating effect of IGW

Concluding remarks

Extraction of angular momentum:

- excitation model of penetrative convection \Rightarrow take into account the effect of plume-induced IGW on rotation

- on the RGB : \Rightarrow IGW can not reach the core (cf Fuller et al., 2014) \Rightarrow another process should operate (mixed-modes, Belkacem et al., 2015, etc...)

- on the subgiant branch : \Rightarrow IGW generated by penetrative convection are a good candidate to brake the core rotation

 \Rightarrow regulating effect agreeing with the seismic observations

 \Rightarrow work in progress

Concluding remarks

Extraction of angular momentum:

- excitation model of penetrative convection \Rightarrow take into account the effect of plume-induced IGW on rotation

- on the RGB : \Rightarrow IGW can not reach the core (cf Fuller et al., 2014) \Rightarrow another process should operate (mixed-modes, Belkacem et al., 2015, etc...)

- on the subgiant branch : \Rightarrow IGW generated by penetrative convection are a good candidate to brake the core rotation

- \Rightarrow regulating effect agreeing with the seismic observations
- \Rightarrow work in progress

Next step :

- role of IGW to be confirmed numerically (for example, on a static stellar model) and ...
- ... to be implemented in a stellar evolution code with the interaction with other processes (in CESTAM with the collaboration of J. Marques, IAS)

Thank you for your attention !

Internal rotation profile of the Sun

Rotation frequency of the Sun according to data from GOLF et MDI on the SoHO satellite (Rafael A. Garcia, 2007)

Effect of the threshold selection criterion

Change of criterion ~ shift in the threshold value for the differential rotation