

## The key role of critical layers for tidal dissipation in stars

Astoul, A., Mathis, S., Baruteau, C., André, Q.



• A prototype of differentially rotating convective zone

- Local Cartesian box
- Convective medium
- Rayleigh friction
- Tidal forcing
- Latitudinal mean flow :  $\overline{U}(y)$
- Boussinesq approximation
- Coriolis but no centrifugal acceleration





$$\frac{\mathrm{d}^{2}\hat{V}}{\mathrm{d}y^{2}} + \frac{k_{/\!\!/}}{4\mathcal{A}^{2}} \left[ 2i\tilde{f} \frac{\mathrm{d}^{2}\overline{U}}{\mathrm{d}y^{2}} \mathcal{A} - 4\Sigma k_{x} \frac{\mathrm{d}\overline{U}}{\mathrm{d}y} \mathcal{B} + k_{/\!\!/} (\mathcal{B}^{2} - 4\mathcal{A}\mathcal{C}) \right] \hat{V} = \underbrace{S(x, y, z)}_{\kappa(y)^{2}}$$

$$\rightarrow \mathcal{A} = 0 \implies \text{critical layers (corotation)}$$

$$Tidal forcing$$

## Waves propagation domain

• The 2-D Poincaré equation in V(y,z) have to be of hyperbolic type to have wave propagation.

$$\implies \frac{\omega_{\pm}(y)}{2\Omega} = -yk_xRo \pm \sqrt{\frac{1}{2}\left[1 - Ro\cos\theta + \sqrt{(Ro - \cos\theta)^2 + \sin^2\theta}\right]}$$

for a linear shear:

$$\overline{U}(y) = \Lambda y$$

and

$$Ro = \frac{1}{2\Omega} \frac{\mathrm{d}\overline{U}}{\mathrm{d}y} = \frac{\Lambda}{2\Omega}$$



- Waves propagation:
- D modes → propagation in the full domain
- DT\* modes → propagation in a narrow domain

\* DT: Differential rotation with a turning surface [Baruteau and Rieutord 2013]

## Waves behaviour at critical layers

• Development of the Schrödinger-like equation at critical layers :

Complex number depending on the Rossby number Ro  $\hat{V}''(y) + \frac{\hat{V}''(y)}{(y - y_c)^2} \hat{V}(y) = 0$ 

\* Stable critical layer



Damping

Tidal inertial waves transfer their momentum to the mean flow

- $\spadesuit$  if  $|\operatorname{Im}(\chi)| \ll |\operatorname{Re}(\chi)|$ , 2 regimes :
  - \*  $\operatorname{Re}(\chi) \gg 1/4$ , stable
  - \*  $\operatorname{Re}(\chi) \ll 1/4$ , unstable

\* Shear unstable critical layer



Incident tidal inertial waves

Damping or possible over-reflection/transmission

In the case of over-reflection/ transmission, the shear provides energy to tidal waves

Reflected/transmitted waves