
INTERNAL WAVES

Analytical model

• dispersion relation of the staircase 
generalizing [BQF15]:  
• transmission coefficient T generali-

zing  [S16]:

Criteria for transmission

Perfect transmission
• large wave-length: 𝜆 ≫ D	
• resonance with inertial modes
• at the critical latitude
• free mode of the staircase (root of 

the dispersion relation)

Total reflection
• short wave-length: 𝜆 ≪ D

Fig. 2: Vertical cut-off wavelength as a function 
of number of steps, measured for 3 criteria on T.
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MODEL

System: a small patch of the envelope of 
a giant planet containing a density 
staircase sustained by layered semi-
convection. The planet rotates with an 
angular velocity Ω, and is submitted to a 
periodical tidal forcing of frequency 𝜔.

Local Cartesian model: local box 
centered on a point M at the colatitude 
𝛳, with local radial (z), latitudinal (y), and 
azimuthal (x) directions.

Physical ingredients
•  Density staircase: m convective 

steps of size d separated by stably-
stratified interfaces of size l, total size 
D, mean buoyancy frequency N
• Restoring forces: Coriolis & 

buoyancy

• Dissipative mechanisms: viscosity 
and thermal diffusion

Propagation of internal waves
• Transmission coefficient T

Tidal response:
• Var ia t ions o f ve loc i ty f ie ld , 

pressure, density, buoyancy

• rates of tidal dissipation: viscous 
d i s s i p a t i o n D v i s c a n d t h e r m a l 
dissipation D ther, and frequency-
integrated dissipation denoted by ⟨.⟩

MOTIVATIONS

Tidal interactions drive the thermal, 
rotational and orbital evolution of 
planetary systems over astronomical time 
scales. However, how they operate 
depends on the details of the internal 
structure of the celestial bodies involved.

For giant planets, layered semi-
convection (and associated density 
staircases) in their gaseous envelope  is 
invoked to explain Saturn's luminosity 
excess [LC13] and the abnormally large 
radius of some hot Jupiters [CB07].

We study the propagation of 
internal waves in a region of layered 
semi-convection. The goal is then to 
u n d e r s t a n d t h e r e s u l t i n g t i d a l 
dissipation when these waves are 
excited by other bodies, such as moons.
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CONCLUSIONS & PERSPECTIVES

Take away message

• Internal waves are strongly affected by the presence of a density staircase in a 
frequency-, latitude- and wavelength-dependent manner.
• Layered semi-convection is a possible candidate that could explain high tidal 

dissipation rates observed by e.g. [L+17].

Consequences for the seismology of planets

• New proposed criteria to probe the core of giant planets by seismology

• New modes can potentially be observed

To be done

• Calculation in a global spherical model

• Include non-linear effects, differential rotation and magnetic field
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How density staircases in giant planet interiors  
affect the propagation of internal waves and  

modify the rates of tidal dissipation?
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     Melting of rocky elements from the core creates a stabilizing compositional gradient 
[M+15]. Its competition with the entropy gradient can trigger layered semi-convection: 
density staircases are created.   In turn, the propagation of internal waves is 
strongly affected, e.g. almost all short wavelength waves are reflected at the top of the 
staircase, thus seeing an artificially enlarged core.       Resonances with free modes lead 
to the possibility that new modes can be observed by seismology.    The resulting 
tidal dissipation is modified versus a fully convective envelope: dissipation spectra 
show particular resonances, and the rates of tidal dissipation change accordingly.
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TIDAL DISSIPATION

Numerical model

• Spectral method to solve the linearized Navier-Stokes equations for tidal gravito-
inertial waves, with periodic boundary conditions in every direction

• Buoyancy frequency profile using smooth bumps of amplitude calculated by 
prescribing a mean value N 

Dissipation spectra

• Extra dissipation peaks (excitation of free modes of the staircase)

Frequency-integrated rates

• Exploration of parameter space: aspect ratio 𝜀 = l/d

• High dissipation rates in the relevant limit of small 
aspect ratios [LC12]
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Fig. 1: Transmission coefficient as a function of 
wave’s frequency and vertical wave number. 
White arrow: 𝜔 = 2Ωcos𝛳, dashed red line: 𝜔 = 
2Ω. Each band of perfect transmission 
corresponds to a free mode of the staircase.
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Extra tidal 
dissipation in a 
layered profile 
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convective 
envelope ? 

Core

Fig. 4: Viscous (blue), thermal (red) and 
total (yellow) frequency-integrated dissi-
pation rates as a function of aspect ratio. 
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Fig. 3: Viscous (blue), and thermal (red) 
dissipation rates as a function of forcing 
frequency 𝜔/2Ω. Each resonant peak 
corresponds to the excitation of a free 
mode of the staircase (see      ).2


