

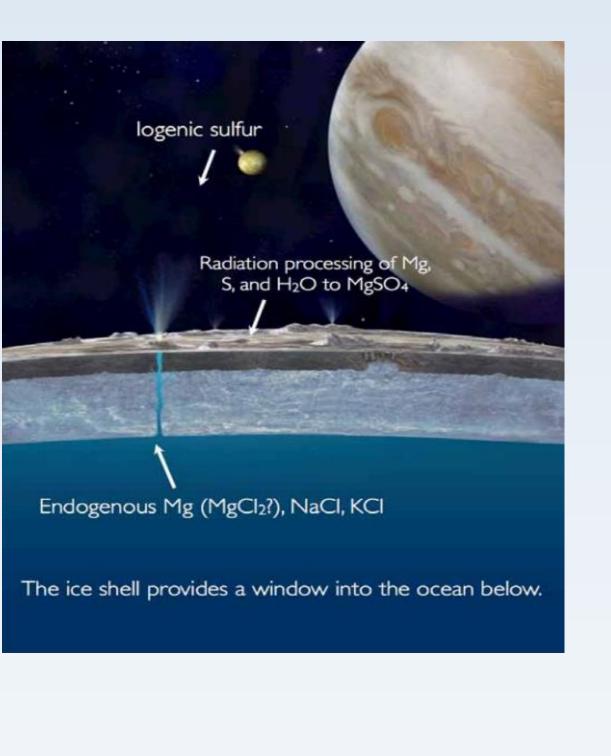
Preliminary design of a CubeSat for plume sampling and imaging at Europa

David GAUDIN(1), Nicolas ANDRÉ(1), Michel BLANC(1), David MIMOUN(2) (1) IRAP/CNRS-UPS, Toulouse, France ; (2) ISAE-SUPAERO, Toulouse, France

Abstract : Europa is the closest and probably the most promising target to perform a comprehensive characterization of habitability and search for extant life. A proposal to ESA's Cosmic Vision programme has recently been submitted in order to propose that NASA and ESA join forces to design an ambitious planetary mission (JEM, for Joint Europa Mission) to reach this objective. JEM will be assigned the following overarching goal: Understand Europa as a complex system forcing, characterize the habitability of its potential biosphere, and search for life in its surface, sub-surface and exosphere. The proposed JEM mission will consist of two space platforms: a carrier/relay/orbiter platform (hereafter referred to as orbiter), and a soft lander platform. Possible CubeSat additions to JEM can complement the science objectives in a unique way, in order to study phenomena of great interest not achievable by the orbiter. The recent observations by the Hubble Space Telescope of plumes rising hundreds of kilometres above Europa's surface rises the interest for directly sampling the material from these plumes, when occurring, as part of our life search strategy.

In this poster, we will present a preliminary design of a 12U CubeSat designed to be deployed by the Joint Europa Mission in order to study in detail potential Europa plumes through in situ measurements of their charged particles and magnetic field environments as well as imaging of their surface sources. Flying a CubeSat in the Jupiter/Europa environment constitutes a significant challenge and we will address in particular issues related to propulsion, power as well as radiation mitigation.

Science Mission


Mission and Environment Constraints

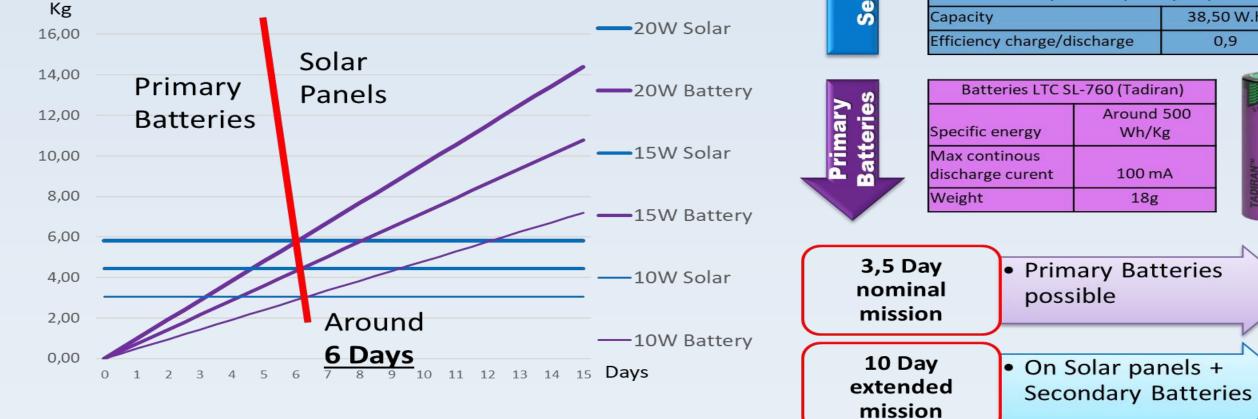
Joint Europa Mission (JEM) proposal as M5 for ESA Cosmic Vision

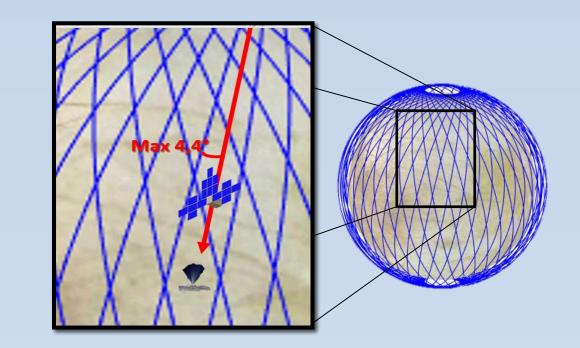
EPIC Science Objectives

Plumes provide the easiest access to the composition of the subsurface ocean

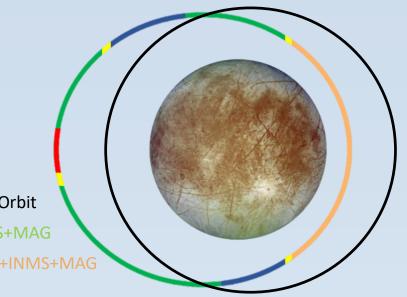
EPIC Mission Scenario

Mission profile :

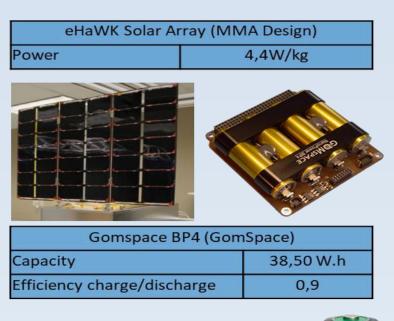

- JEM tracking and determination of interesting plumes via a wide angle camera (up to 30 days)
- Ejection of the CubeSat the nearest possible of an identified plume (max 1,8 days)
- Maneuver to reach the plume at the periapsides of the orbits (15Km, and lower)
- Transmission of the data to JEM thanks to a S-Band transmitter


Mission duration:

• <u>**3,5 days**</u> (1 complete coverage of Europa's orbit around Jupiter) with a possible extension of a maximum of 10 Days after deployment


Trade-Off Power Source

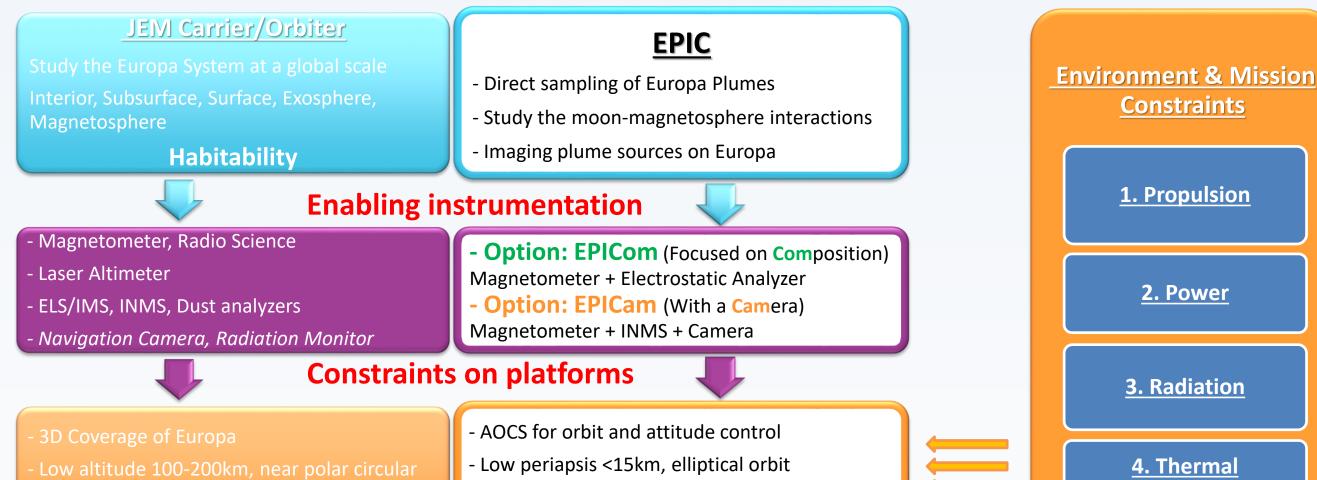
- Thrust Mode (11,5-23,2W)
- Guidance Mode (8,9)
- Com Mode (6,9W)
- CAM + INMS + MAG (15,6W)
- INMS+MAG (7,4W)



Mission operations

- Thrust Mode - JEM Orbit - INMS+MAG - Com Mode CAM+INMS+M

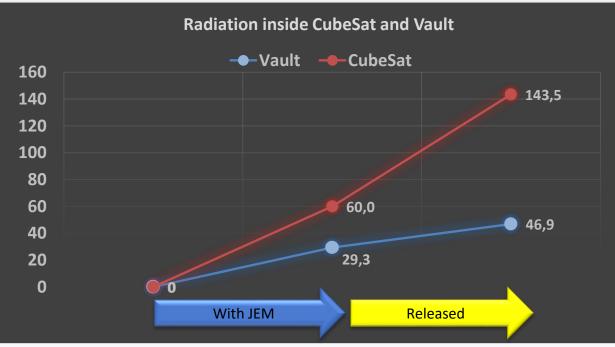
Batteries LTC S	L-760 (Tadiran)	
Specific energy	Around 500 Wh/Kg	JEVOLIU
Max continous		


- Study <u>composition of plumes</u>
 - Dry Source $(CH_4, CO_2, CO, N_2, Ar)$
 - Liquide Water Source (Na^+ , Cl^- , CO_3^{-2} , Mg^{+2} , SO_4^{2-})
- Take <u>images of sources</u> to better understand their structures
- Analyze the <u>density of plume</u> measuring drag forces
- Study **Europa magnetosphere**, and its interaction with Jupiter's
- Measure <u>cyclotron waves</u> produced by the ionization of plume's matter

Study the Habitability of Europa

EPIC Science Traceability Matrix

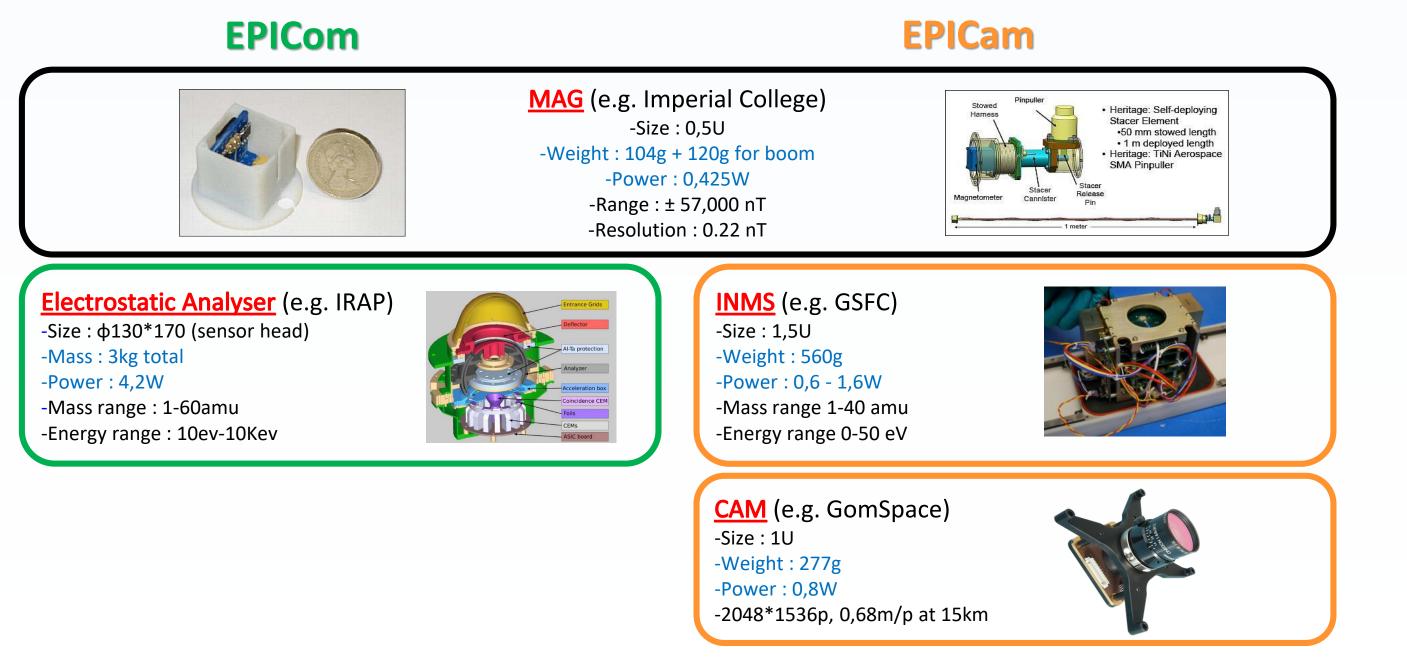
Science objectives

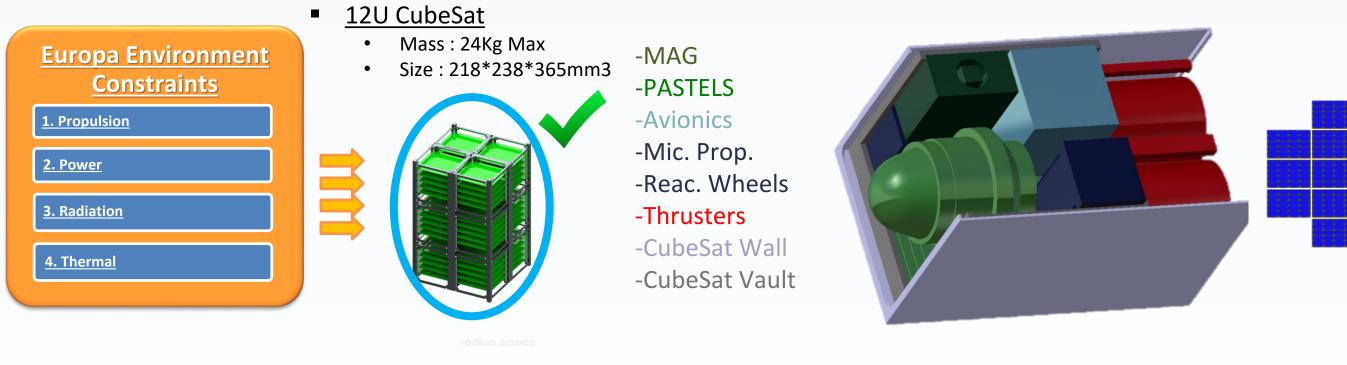


Radiation Issues and Mitigation

	Dose for EPIC	Duration		2,5mm Al (Krad)		
		min	max	min	max	Admissible Radiation Dose
	Interplanetery trip	4,9 Y		0	0	 < 150Krad in the CubeSat
Σ	JOI + PRM + Jovian Tour	16 M		0	0	 < 50Krad in the Vault
	Lander Relay Phase	35 D	44 D	359	433	
	Tracking of plumes	1,8 D	30 D	18,3	309	
/	Subtotal with JEM			<u>513,3</u>	<u>629,6</u>	
2	Manœuvre	0 D	< 1,8 D	0	18,3	
	EPIC Operation Days	3,5 D	10 D	36	103	Rad
<u> </u>	Subtotal Released			<u>36</u>	<u>111,3</u>	
	Total EPIC (Krad)			550	1023	160
	(an ny (an)	200 - 55 (200)				140 120
						100
	Jager GAR Handler		1. 10 A			80
		/				60
						40
						20
						0 0

Three layers of Aluminium ssible Radiation Dose


- The deployer protects the cubesat until an interresting plume is detected (13 mm)
- The external structure of the cubesat (3mm)
- Vaults protect more sensitive components of the cubesat (6mm)



Preliminary Design of EPICom and Conclusion

Strawman Payload Tailored for EPIC

	8,5 Day Nominal Mission n Primary Batteries	Margin	Sub-system	Mass (g)
Structure		30%	CubeSat MONA 12U Supaéro	2445
			Internal Shielding	1636
Propulsion	system	30%	2 x MPS 130 Aerojet RocketDyne (1U)	3320
SCAO	AOCS Block		ХАСТ	910
	Micropopulsion	30%	Vacco	1245
	Sun Sensor		5 x Sun Sensor FSS	15
	Support		Supports	150
AV	Power Supply card	30%	Gomspace P60	286
	S-Band			425
	Command Data Handling System		Ninano (Steel electronics)	85
	Interface			100
	Supports and rodes			415
Battery pao	ck	30%	150 x LTC SL760 AA	2700,0
RF	S-Band	30%	2 x Syrlinks EWC31	230
Payload	Charged Particles Spectrometer	20%	PASTELS	2860
	Magnetometer	30%	MAG	104
	Boom		BOOM MAG	120

Total Mass CubeSat	22,173 Kg					
Margin Mass (Kg)	1,827					
Margin Mass Ratio	8,23%					
Total Mass CubeSat + Deployer	> 40 Kg					
Strong constraints for JEM but:						
 Provides <u>unique Science</u> 						
<u>Returns</u>						

- Gives opportunity to sample a plume 'freshly ejected'
- Relaxes risks for JEM

Open Questions

- Solar Panel:
 - Light deployment structure
 - Use of hardened Solar Cells or not regarding radiation
- AOCS:
 - Star-Trackers for EPIcam?
 - Magnetorquer in Jupiter Magnetic Field or microprop.
- Thermal Regulation