

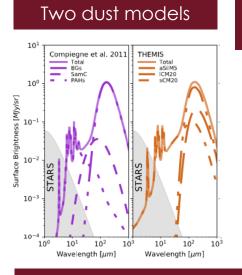
Dust emission modeling Multiple approaches to tackle the dust problem

Jérémy CHASTENET, Caroline BOT, Karl D. GORDON

Investigating the impact of model assumptions in fitting the dust emission in nearby galaxies

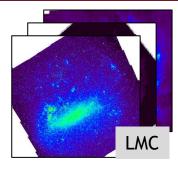
 \rightarrow Application to the Magellanic Clouds

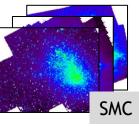
Investigating the systematics due to dust heating simplifications in common models


 \rightarrow Draine & Li (2007) and the DIRTYGrid

Chastenet et al. (2017) 2017A&A...601A..55C Chastenet et al., in prep

Fitting the dust emission in the Magellanic Clouds

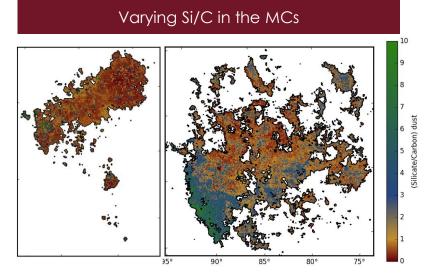

We fit the Magellanic Clouds (MCs) dust emission with two dust models: Compiègne et al. (2011) and THEMIS (Jones et al. 2017). We use a strictly identical fitting technique, to get rid of computational discrepancies, and focus on modelbased variations.



DustBFF (Gordon et al. 2014)

Covariance matrices in a Bayesian approach. Best fit found by χ^2 minimization

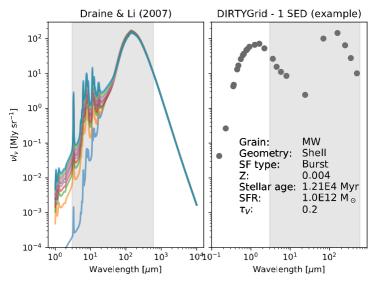
Spitzer and Herschel observations



Results

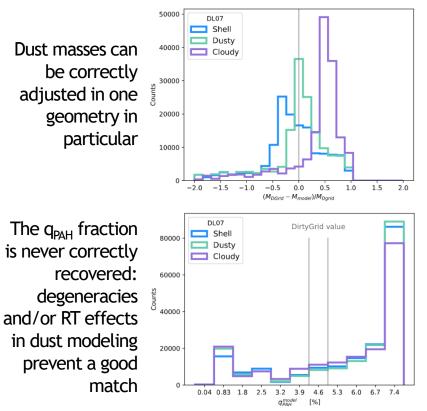
<u>THEMIS shows better fitting residuals</u>, especially in the far-IR, due to a different spectral index • <u>Range of Si/C</u> ratios (\leq 1) to reproduce the MCs dust emission, implying a different dust composition from that of the MW! (and a significantly low estimation of Si amount in the SMC) • <u>Dust masses agree with literature:</u>

SMC: ~ $(2.9 - 8.9) \times 10^4 M_{\odot}$ LMC: ~ $(3.7 - 4.2) \times 10^5 M_{\odot}$



Systematics in dust modeling of complex environments

We use radiative transfer to calculate the dust heating environment in a 3D geometry, and create the corresponding emission spectra. We fit these spectra with a common dust model. Our goal is to identify systematics errors in dust emission modeling due to the assumptions for dust heating sources mixing.


Principle

Use the Draine & Li (2007) model to fit each SED created from radiative transfer

Results

Recovering the parameters is geometry dependent: the power-law assumed to take into account multiple dust temperatures does not allow to match the data in each case.

