Diffusion region's structure and evaluation of Ohm's law at the magnetopause with MMS data. G. Cozzani¹, A. Retinò¹ and the MMS team.

2017-01-27 UTC

Diffusion region's structure and evaluation of Ohm's law at the magnetopause with MMS data

July 4^{th} , 2017 – Journées de la SF2A 2017

Laboratoire de Physique des Plasmas

G. Cozzani¹, A. Retinò¹, F. Califano², H. S. Fu¹², O. Le Contel¹, Y. Khotyaintsev³, A. Vaivads³, H. Breuillard¹, L. Mirioni¹, B. Lavraud⁴, R.B. Torbert⁵, T. Moore⁸, R. P.A. Lindqvist⁶, J. L. Burch¹¹, R. E.Ergun⁷, B.L. Giles⁸, S. A. Fuselier¹¹, C. T. Russell⁹, R. Nakamura¹⁰, B. Mauk¹³

¹LPP - CNRS - Ecole Polytechnique - UPMC ²Department of Physics, University of Pisa, Italy
³Swedish Institute of Space Physics, Uppsala, Sweden, ⁴IRAP-CNRS- Univ. P. Sabatier, Toulouse
⁵University of New Hampshire, Durham, NH, USA, ⁶Royal Institute of Technology, Stockholm, Sweden,
⁷LASP, University of Colorado, Boulder, Colorado, USA, ⁸NASA Goddard Space Flight Center, Greenbelt, MD, USA,
⁹Department of Earth and Space Sciences, University of California, Los Angeles, CA, USA,
¹⁰Space Research Institute, Austrian Academy of Sciences, Graz, Austria,
¹¹SWRI, San Antonio, TX, USA, ¹²Beihang University, China,
¹³The Johns Hopkins University APL, Laurel, Maryland, USA

Looking for an Electron Diffusion Region (EDR) encounter

Event on January, 27^{th} 2017 at ~ 12:00 UTC:

- MMS is near the subsolar point
- Mean spacecraft separation $\sim 7~{\rm km}$

MMS Location for 2017-01-27 12:00:00 UTC

Overview of the event: summary plot

MMS is skimming the MP and spends most of the time in the magnetospheric boundary layer

4 s/c analysis

MMS is skimming MP on the MSH side, then cross the CS. Differences among s/c observed Before 120542.8 are spacial.

Mean s/c separation $\sim 7~{\rm km}$

- Differences in B_m among the $s/c: B_{m,MMS3} \sim 0$ nT while it reaches 5 nT for the other s/c
- $V_{e,m}$ (and J_m) is higher for MMS3

$$\mathbf{LMN} = \left(\begin{array}{rrrr} 0.05 & 0.03 & 0.99 \\ -0.30 & -0.95 & 0.04 \\ 0.95 & -0.30 & -0.04 \end{array}\right)$$

 $V_{MP} \sim 40 \ (0.96 \ -0.25 \ 0.08) \ km/s$ $d_{CS} \sim 0.6 \ s \ 40 \ km/s \sim 24 \ km \sim 12 \ \delta_e$

EDR signatures

$$\mathsf{P} = \begin{pmatrix} P_{||} & P_{12} & P_{13} \\ P_{12} & P_{\perp} & P_{23} \\ P_{13} & P_{23} & P_{\perp} \end{pmatrix}$$

$$D_{ng} = \frac{\sqrt{8(P_{12}^2 + P_{13}^2 + P_{23}^2)}}{P_{||} + 2P_{\perp}}$$

$$\sqrt{Q} = \sqrt{\frac{P_{12}^2 + P_{13}^2 + P_{23}^2}{P_{\perp}^2 + 2P_{\perp}P_{||}}}$$

Swisdak, 2016

$$A\phi_e = \frac{2|P_{\perp,1} - P_{\perp,2}|}{P_{\perp,1} + P_{\perp,2}}$$

Scudder and Daughton, 2008

Magnetic field topology: the FOTE method

2017-01-27T12:05:43.222 40 -We use the First-Order Taylor 30 Expansion method $[Fu \ et$ al.,2015, 2016, 2017 20 to reconstruct the field topology in proximity of the 10 magnetic minimum. N [km] MMS4 0 The smallest s/c-null distance -10 is in correspondence of the ${\bf B}$ 20 0 (nT) 60 40 minimum -20 MMS4 and MMS2 are closest to the nulls, -30 -40 MMS3 $|R_{_{MMS4}} - R_{_{null}}| \sim 12 \ km \sim \ 6 \ d_{_{o}}.$ -20 -40 40 0 MMS3 is the furthest from the 20 20 0 null. -20 M [km] 40 L[km] -40

MM3 and MMS4 comparison

MMS3 shows a larger $\mathbf{J}_{\mathbf{m}}$ while MMS4 observes higher dissipation.

In the proximity of the null electrons show clear sign of demagnetisation, especially for MMS4.

Ohm's law evaluation

The pressure term is the dominant one. It has to be underlined that all the terms are averaged over the four spacecraft.

Conclusions

- We presented a study of a magnetopause crossing showing signatures of an EDR encounter nearby a magnetic null.
- Differences among spacecraft are seen even at a mean inter-spacecraft separation of ~ 7 km.
- The FOTE method is used to reconstruct the magnetic field topology: the null to be close to MMS (~12 km). MMS4 and MMS2 are the Closest to the null, MMS3 is the furthest.
- MMS3 and MMS4 both show deviation from the frozen-in condition (on electron scales). Yet, observations are sensitive to the E field calibrations.
- We computed then Ohm's law in the null region showing the role of the pressure term. Yet, all the terms are averaged over the 4 points.

Possible interpretations:

- Not all the s/c cross the EDR: the characteristic length of the EDR is comparable to the inter-s/c separation.
- All the s/c are inside the EDR: differences among s/c suggest that EDR has a <u>complex</u> structure.

Ongoing/future work: analysis of the distribution functions; wave analysis.