

Moons and Jupiter Imaging Spectrometer (MAJIS): an exobiological instrument for Jovian system

CENTRE NATIONA D'ÉTUDES SPATIALE

Xiaps

P. Guiot¹, J. Carter¹, M. Vincendon¹, Y. Langevin¹, G. Piccioni², F. Poulet¹, G. Filacchione² and MAJIS team

Introduction

Jupiter's system is an extraordinary small-scale model of planetary system, with a great complexity, that mostly remains to be understood:

→ Strong Jupiter magnetosphere generating material exchanges

➔ Exobiological potential of the subsurface liquid water oceans of Europa and Ganymede

- Active geology resurfacing satellites, along with exogenous processes
- Highly dynamical Jupiter's atmosphere

Most spectral imaging data of the Jovian system available so far come from Galileo/NIMS, though the dataset has recently increased with Juno/JIRAM. However, NIMS was highly impeded by noise levels due to the **harsh radiative environment**.

The MAJIS instrument design

The instrument characteristics:

- Thermal: 90K for IR FPA (coldshielded), 140K for Vis-NIR FPA and optics, passive cooling.
- Spectral: grating spectrometer (Δλ < 10 nm) with two channels for
 0,5-2,35 µm and 2,25-5,54 µm ranges, using the same telescope.
- Spatial: two 1024x1024 H1RG detectors, binned 2x2 for a 36 µm pitch, yielding a 150 µrad IFOV.
- \blacktriangleright Radiative: need for shielding and mitigation strategies \rightarrow despiking.

Scientific case of astrobiological potential Galilean Satellites:

- Distinguishing endogenous processes from exogenous contributions (impacts and plasma torus) by mapping surface icy and non-icy compounds in their geological context at various scales during flybys and orbit.
- Detecting possible surface manifestations of water ocean, such as organics. The average spectral resolution of
 6.56 nm/band in the IR was chosen to optimize detection and discrimination of organic bands.
- Characterizing exospheres and plumes as a probe of exchanges with subsurface and outer environment via limb observations.

Planned observations

- JUICE will perform a 1 year Jupiter tour including several close flybys of Europa, Ganymede and Callisto. Several areas on Europa, Callisto and Ganymede will be observed at 75 m/px.
- Distant observations will be available for Io, small satellites and rings. The time coverage for Io's activity will help understanding the highly dynamic phenomena of this moon.
- A 9-months Ganymede orbit will follow, at 500 km altitude, yielding full coverage at 2.5 km/px.
- To allow plumes and exospheres detections the probe will perform limbe observations at high phase angles.

The IAS contribution

- Instrument currently in development phase B/C.
- IAS has instrument PIship and is responsible for the Focal Plane Array: detector, electronics and linear filter.
- Instrument calibration facilities will also be provided by IAS.

First

characterization bench in its thermal vacuum chamber for detector's optical characterization

HST plume detection on Europa (2015)

- Several night side observations are planned for lo's and Jupiter's hotspots.
- The MAJIS images will use 400x400 pixels. Those images will cover 30 km on Europa's surface at closest flyby. The following picture compares this sampling to Galileo/SSI images (800x800 pixels).

Main development challenges:

- Readout strategies for despiking.
- Extended spectral range > 5 µm, making parasitic thermal flux a major issue.
- Achieving high SNR along the spectral range.

instruments to better understand the **magnetosphere**.

Measuring troposphere composition and dynamics, using hotspots where the cloud coverage is thinner in the 5 µm window, allowing H2O and NH3 detections down to 7 bar altitude.

Perijoves.	1001							
Callisto	1	÷.	A		- C			
Ganymede	1A		Δ.	Δ	A A A			->
Europa		4	2				1	
JUICE phase	2	3	4	5	1	6-8	9	10
Year	2030	2	031		2032		2033	- ile - ie

20 MA deli	20: JIS very	20 JUI Iau	22: CE nch	202 Jupiter Inse	28: Orbital rtion	2030-2032: Nominal mission	
	Cruise phase			ruise phase			
						1 1	