

The Extragalactic Background Light

Probing the cosmic optical & infrared bckgds with y rays

EBL photons

manne

Maria

Jonathan Biteau

IPN Orsay

Based on fruitful collaborations with B. Biasuzzi (IPNO), D. A. Williams & O. Hervet (UCSC), the H.E.S.S. & VERITAS teams, and the CTA y-ray propagation task force.

The Extragalactic Sky

Extragalactic Background Light Spectrum

On top of source populations: lines? truly diffuse components? line-of-sight interactions? Jonathan Biteau | SF2A 2017 | 2017-07-05 | Page 2/19

What's the EBL & where does it come from?

Jonathan Biteau | SF2A 2017 | 2017-07-05 | Page 3/19

Direct measurement of the night-sky brightness

But bright local environment (e.g. zodiacal light) suggests foreground contamination, particularly for the COB \rightarrow overestimation of the EBL.

Jonathan Biteau | SF2A 2017 | 2017-07-05 | Page 4/19

Galaxy Counts

Counting the number of objects per magnitude band

Faint end of the distribution function must drop below a given slope for the integral to converge (completeness). Does not account for unknown populations of sources or truly diffuse component \rightarrow underestimation.

Jonathan Biteau | SF2A 2017 | 2017-07-05 | Page 5/19

The 60s' brilliant idea

"Observations of cosmic photons in the region 10^{12} - 10^{13} eV would be of great value, since in this region absorption due to cosmic optical photons is important. In fact, this may provide a means of determining the optical photon density and of testing cosmological models. The technique of observing shower Cherenkov radiation would probably be most useful here; however apparently it can only be used of determine high-energy photon fluxes from discrete sources . Some slight indications that quasars may be such sources has come from observations."

Daniel López cielosdelteide.com

(Gould & Schréder, 1967)

Gamma-ray Absorption

The EBL imprint on gamma-ray spectra

Gamma-ray disappearance imprints the spectra > 100 GeV

Near sources (z < 0.05) mostly affected by the CIB

Far sources (z>0.3) mostly affected by the COB

Understanding TeV blazars

Emission at the source: intrinsic spectrum

Curvature, smooth cut-offs expected from acceleration and radiative processes \rightarrow disentangle from EBL effect?

Model-dependent approaches

Broad-band modeling of "average" spectra (SSC) \rightarrow fixed intrinsic spectrum e.g. Dominguez+ 13

Fixed-parameter approaches

Curvature fixed to average value over pop. e.g. Sanchez+ 13 Extrapolation of the low-energy, unabsorbed spectrum e.g. *Fermi*-LAT+ 12, Armstrong+ 17

Maximum-likelihood approaches

Free-parameter hypothesis testing with increasing complexity (PWL \rightarrow LP/EPWL \rightarrow ...)e.g. H.E.S.S. 13, Biteau & Williams 15Jonathan Biteau | SF2A 2017 | 2017-07-05 | Page 9/19

Ground based (>100 GeV)

In particular: H.E.S.S., MAGIC, VERITAS

 ~ 200 sources (~ 70 extragalactic – 35%)

Fermi-LAT (>10 GeV - 3FHL)

~ 1600 sources (~1200 extragalactic - 80%)

Jonathan Biteau | SF2A 2017 | 2017-07-05 | Page 10/19

EBL-Model-Dependent Constraints

Using template EBL model

1 free EBL parameter: normalization α $\phi_{\text{observed}}(E,z) = \phi_{\text{intrinsic}}(E) \times \exp[-\alpha \times \tau_{\text{template}}(E,z)]$

Fermi-LAT ~ 100 GeV

 1^{st} det. in 2012: 6 σ detection, mostly from z ~ 1

H.E.S.S. $\sim 1 \text{ TeV}$

Transparency

0.5

10

0.5<z<1.6

Fermi-LAT 12

Distance

0.5<z<1.6

 10^{2}

Model-Independent Gamma-ray Constraints

Optical depth: τ(E,z) = Target density x Distance x Cross section
→ 3D integral over: energy of target photons, redshift, gamma-to-target angle
→ 2D integral after analytical reduction of the integral over the angle

If Target density(ϵ, z) = Target density(ϵ, z =0) x Evolution(z), then

Jonathan Biteau | SF2A 2017 | 2017-07-05 | Page 12/19

UV-IR Spectral Imprints

Coorav & Yoshida 04 10^{2} **Combining (almost) all TeV spectra** Biteau & Williams 15 excluded Model-independent 11σ detection 10¹ vI_{v} ($nW m^{-2} sr^{-1}$) Overall 20% accuracy from NUV to FIR 10° Excellent agreement with galaxy counts, excluding most 10^{-1} of direct observations (contamination by foregrounds) **Pop. III stars** 3 EBL models still ok (Franceschini+ 08, Dominguez+ 11, Gilmore+ 12) 10⁻² 10 <u>Coorav & Yoshida 04</u> 10² Extreme reionization models excluded (eV overproduction) excluded 10¹ Driver+16 100 $vI_v (nW m^2 sr^1)$.E.S.S. (H.E.S.S. Collaboration 2013) 10[°] or detection limit Exercite (Biteau & Williams 2015) 1% MAGIC (Ahnen et al. 2016) 10 ∎ elGL v I_v (λ)(nW m⁻² sr⁻¹) **Miniquasars** 10 10^{-2} $\lambda(\mu m)$ excluded vI [nWm⁻² sr⁻¹] 00 1 **Dark** stars 0.1 10 0 100 10 Wavelength [µm] 100 1000 0.1 10 Maurer+12 Wavelength (μm)

Jonathan Biteau | SF2A 2017 | 2017-07-05 | Page 13/19

Distance Modulus

Some constraining power on H_o

γ-ray optical depth \propto EBL / H₀ Galaxy counts (if integral) \rightarrow EBL

Two measurements on the market

$$\begin{split} h_{_0} &= 0.71 \pm 0.05 \pm 0.11 \text{ Dominguez \& Prada 13} \\ h_{_0} &= 0.88 \pm 0.13 \pm 0.13 \text{ Biteau \& Williams 15} \\ < 2\sigma \text{ tension with best measurement} \end{split}$$

Much less constraining power for other parameters

Gamma-ray cosmology: EBL + [...]

Jonathan Biteau | SF2A 2017 | 2017-07-05 | Page 15/19

Current & Future y-ray Landscape

Jonathan Biteau | SF2A 2017 | 2017-07-05 | Page 16/19

2020 perspective: the Cherenkov Telescope Array

10× sensitivity + energy extensions < 100 GeV and > 10 TeV

Northern and Southern Arrays in the Canary Islands and in Chile, ~ 100 telescopes total

Vast Key Science Program

(Extra)Galactic surveys, AGN, Clusters, GRBs, Pulsars, PWN, SNRs, Dark Matter, Fundamental physics...

See upcoming "Science with CTA"

Including y-ray cosmology

Dedicated task force created in 2016 to jointly address the classical and exotic physics that can be probed using γ -ray propagation.

Leads: JB (IPNO), M. Meyer (SLAC)

~70 people signed in, strong French contributions to the simulation and analysis (APC, LAPP, Meudon)

First results from simulations at ICRC2017. Stay tuned!

Jonathan Biteau | SF2A 2017 | 2017-07-05 | Page 17/19

y-ray Cosmology: an Active Field with already Fantastic Discoveries!

γ-ray discovery of the EBL imprint in 2012-2013 by *Fermi*-LAT and H.E.S.S. Since then, about a publication a month on this and related topics

Probe of "Standard" Physics

Now able to measure the EBL spectrum in a model-independent way Amount of EBL known within 20%, already constraining reionization models Shrinking allowed parameter space for the IGMF, pinpoints areas to be studied

Probe of "Exotic" Physics

Hints of beyond-the-standard-model particles (WISPs) not confirmed, improving constraints on the coupling to γ -rays

New LIV constraints close to the Planck scale.

A Bright Future with Strong French Contributions

VERITAS, H.E.S.S., MAGIC, *Fermi*-LAT: incremental improvements to be expected CTA, the ultimate tool: exciting discoveries for classical (and BSM?) physics

Jonathan Biteau | SF2A 2017 | 2017-07-05 | Page 18/19