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Fig. 5. Semidiurnal oceanic tide of the Earth (left column) and Trappist-1 f (right column). The logarithms of the imaginary part of the tidal
Love number (left) and tidal quality factor (right) are plotted as functions of the normalized forcing frequency ! “ p⌦´ norbq {⌦C (where ⌦C
designates the today rotation rate of the Earth) for various orders of magnitude of the drag parameter � “ log p�Rq. These frequency spectra are
computed using the expressions given by Eqs. (70) and (71). In each case, the parameter norb is assumed to be constant and the rotation rate of
the planet varies with the tidal frequency following the formula ⌦ “ norb ` �{2. The resonances associated with surface inertial-gravity modes
are designated by black dashed lines in the top panels and numbers indicate the degree n of the corresponding Hough modes and the sign of
eigenfrequencies given by Eq. (77).The values of parameters used for this evaluation are summarized in Table 1.

that is H “ 4 km (Webb 1980). The radius of the planet is
set to R “ RC km (with RC “ 6378 km), the surface gravity
and density to g “ 9.81 m.s´2 and ⇢s “ 1022 kg.m´3. The
Earth’s ocean is characterized by N „ 10´4

´ 10´2 s´1 and
cs « 1545 m.s´1 (Gerkema & Zimmerman 2008), which means
that ⌧ ! 1. Thus, the e↵ects of stratification are negligible in
this case. We set the Brunt-Väisälä frequency to the intermedi-
ate value N “ 10´3 s´1. All these quantities are summarized in
Table 1.

The drag frequency characterizing the e↵ective Rayleigh
friction (�R) is more di�cult to specify because it models the ef-
fects of several mechanisms, such as turbulent friction, viscous
friction, friction with topography and breaking of tidal waves
(Garrett & Munk 1979; Garrett & Kunze 2007). Thus, we be-
gin by studying the dependence of the oceanic tidal response
on �R. The frequency spectra of the imaginary part of the tidal
Love number (Eq. 70) and of the associated tidal quality fac-
tor (Eq. 71) are plotted in Fig. 5 (left column) as functions of
the normalized frequency ! “

p⌦´ norbq

{⌦C (⌦C stands for
the today Earth rotation rate) for various orders of magnitude of
�R. We observe on these plots the resonances associated with
surface gravity modes modified by rotation. They correspond to
the eigenfrequencies �˘

n given by Eq. (77). As �R decreases,

Table 1. Values of parameters used in Section 4. For the Earth, MC,
RC, g, Porb and Mpert are given by NASA fact sheets. The oceanic pa-
rameters H, ⇢s, cs and N come from Gerkema & Zimmerman (2008).
For TRAPPIST-1 f, we use the values given by Wang et al. (2017) for
M, R, Mpert and Porb. The surface gravity g is estimated using the defi-
nition g “ G M{R and we use the oceanic parameters of the Earth. The
ocean depth is arbitrarily set to H “ 1000 km.

Parameters Units Earth Trappist-1 f
M MC 1 0.36
R RC 1 1.045
g m.s´2 9.81 3.23
H km 4.0 1000
⇢s kg.m´3 1022 1022
cs m.s´1 1545 1545
N s´1 10´3 10´3

Mpert kg 7.346 ˆ 1022 1.59 ˆ 1029

Porb days 27.32 9.20

the variability of =  k2
2

(
increases. Particularly, the level of the

non-resonant background decreases proportionally to �R, while
the peaks heights increase as �´1

R , which is in good agreement
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the upper boundary, we apply the usual stress-free condition (e.g.
Unno et al. 1989), �p “ g⇢0⇠r. It follows that

 n pxq

“

 
p0q
n

Dn

 Dne´�x

`

pCn ´ �q e´� “An sin
`
k̂nx

˘
´ k̂n cos

`
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˘‰
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˘(
.

(58)

where  p0q
n is the constant given by

 
p0q
n “

H2⇤m,⌫̃
n

R2k̂2
n

ˆ
N2

��̃
´ 1

˙
Un, (59)

and Cn andDn the dimensionless coe�cients expressed as

Cn “ An `

H
g

`
N2

´ ��̃
˘
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`
k̂n

˘
´
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n
˘
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`
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˘
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Fig. 4. Vertical displacement due to the quadrupolar semidiurnal tide
(� “ 2 p⌦´ norbq, norb being the dynamical frequency) obtained us-
ing the analytic solution established on the thin layer approximation
(Eq. 58). The displacement, normalized by the quadrupolar tidal po-
tential, is plotted in the equatorial plane of the planet as a function of
longitude (horizontal axis) and normalized altitude (vertical axis). The
position ' “ 0 corresponds to the sub-perturber point; the oceanic floor
and surface are located at x “ 0 and x “ 1 respectively. For this compu-
tation, the rotation period of the planet Tspin “ 2⇡{⌦ and orbital period
of the perturber Torb “ 2⇡{norb are set to Tspin “ 1.9 d and Torb “ 100 d,
and we use the values of physical parameters given in Table 1 in the case
of a stably-stratified Earth’s ocean, examined in the next Section.

3.2. Second order tidal Love number and tidal torque

By substituting Eq. (58) in Eqs. (28) and (32) we obtain the com-
ponents of the variation of mass distribution intervening in the

Love numbers and tidal torque (see Eqs. 50 and 51) as explicit
functions of the internal structure parameters,

⇠m,�r;n,k p1q

“ HQm,�
⇠;n Um,�

k and
ª 1

0
�⇢m,�

n,k pxq dx “ ⇢sQm,�
⇢;n Um,�

k ,

(62)
where the frequency-dependent parameters Qm,�

⇠;n and Qm,�
⇢;n are

expressed as
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with � “ �´ ⌧ and the dimensionless coe�cients
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Hence, Qm,�
⇠;n stands for the intrinsic response of the planet due

to the variations of the oceanic surface level, while Qm,�
⇢;n cor-

responds to the contribution of internal gravito-inertial waves.
This later will be equal to zero in the case of an incompress-
ible ocean. The oceanic complex second order Love number k2

2
is then deduced from Eqs. (40), (41) and (46) straightforwardly.
In the quadrupolar approximation, where terms of degrees l ° 2
are neglected, it writes

k2
2 “
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5R

ÿ

nPZ
C2,⌫̃

2,n,2

´
Q2,�
⇠;n ` Q2,�

⇢;n

¯
, (71)

where Moc “ 4⇡R2H⇢s designates the total mass of the ocean.
Similarly, the tidal quality factor Q “

ˇ̌
k2

2{=  k2
2

(ˇ̌
and torque

due to the quadrupolar distortion are expressed as

Q “

ˇ̌
ˇ̌
ˇ̌
ˇ̌

ÿ

n
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, (72)

and

T 2,�
“

1
2

Moc
ˇ̌
U2,�

2

ˇ̌2 ÿ

nPZ
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!
C2,⌫̃

2,n,2

´
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¯)
. (73)
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Fig. 4. Vertical displacement due to the quadrupolar semidiurnal tide
(� “ 2 p⌦´ norbq, norb being the dynamical frequency) obtained us-
ing the analytic solution established for the thin layer approximation
(Eq. 58). The displacement, normalized by the quadrupolar tidal po-
tential, is plotted in the equatorial plane of the planet as a function
of longitude (horizontal axis) and normalized altitude (vertical axis).
The position ' “ 0 corresponds to the sub-perturber point; the oceanic
floor and surface are located at x “ 0 and x “ 1 respectively. For
this computation, the rotation period of the planet Pspin “ 2⇡{⌦ and
orbital period of the perturber Porb “ 2⇡{norb are set to Pspin “ 6.0 d
and Porb “ 365.25 d. The used values of parameters are R “ RC,
H “ 100 km, g “ 9.81 m.s´2, N “ 10´3 s´1, cs “ 1545 m.s´1 and
�R “ 10´5 s´1.

1022 kg.m´3 at the surface to 1070 kg.m´3 at 10 km depth
(Gerkema & Zimmerman 2008), which gives the mean gradient
d⇢0{dz “ ´0.0048 kg.m´2. As ⇢0g{c2

s « 0.0043 kg.m´2, the
two terms of Eq. (5) are comparable and must be retained. To
solve the vertical structure equation, two boundary conditions
are required. At x “ 0, we set the impenetrable rigid-wall condi-
tion ⇠r “ 0. At the upper boundary, we apply the usual stress-free
condition (e.g. Unno et al. 1989), �p “ g⇢0⇠r. It follows that
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3.2. Second order tidal Love number and tidal torque

By substituting Eq. (58) in Eqs. (29) and (33) we obtain the com-
ponents of the variation of mass distribution intervening in the
Love numbers and tidal torque (see Eqs. 50 and 51) as explicit
functions of the internal structure parameters,
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with � “ �´ ⌧ and the dimensionless coe�cients
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Hence, Qm,�
⇠;n stands for the intrinsic response of the planet

due to the variations of the oceanic surface level, while Qm,�
⇢;n cor-

responds to the contribution of internal inertial-gravity waves.
This later will be equal to zero in the case of an incompressible
and neutrally-stratified ocean (⌧ “ 0). The contribution of inter-
nal gravity waves to the tidal response with respect to that of sur-
face gravity waves is weighted by the ratio |Q⇢;n{Q⇠;n|. By using
the expressions of the solution, we retrieve the weighting fac-
tor given in the literature (see e.g. Hendershott 1981, Eq. 10.40),
that is |Q⇢;n{Q⇠;n|

„ N2H{g. The oceanic second order Love
number k2

2 is then deduced from Eqs. (40), (41) and (46) straight-
forwardly. In the quadrupolar approximation, where terms of de-
grees l ° 2 are neglected, it writes

k2
2 “

G Moc

5R

ÿ

nPZ
C2,⌫̃

2,n,2

´
Q2,�
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