Planet formation in polar circumbinary discs

Nicolás Cuello & Cristian Giuppone

Question: Why the hell should CBDs become polar?

Observational biais:

Kepler observations
Only a few circumbinary planets
Mostly coplanar geometries

Necessary conditions:

inner binary with a < 1 au warp = tilt $i_{\rm d}$ + twist $\Omega_{\rm i}$ flybys can do the job! Kozai-Lidov osc.

Outcomes: alignment, anti-alignment or **polar alignment**More info —> poster by Antoine Rocher

How stable are these polar orbits?

$$\Omega = 0^{\rm o}$$
 vs.
$$\Omega = 90^{\rm o}$$

Polar orbits are stable !!! (if q=M2/M1=1)

Ideal conditions High eccentricity High to moderate disc inclinations $\Omega = 90^{\rm o}$

NB: eccentric equal-mass binaries and large semi-major axis are favored Island of stability for polar orbits if $\Omega=90^{\rm o}$ —> polar Tatooine nurseries ?

For the "right" initial conditions, polar alignment!

Symmetry breaking between prograde and retrograde orbits —> disk breaking!

NB: we confirm the theory.

But, unexpected results
likely due to the size of the cavity

<u>Future</u>: explore dust dynamics & polar planet formation

- We should expect a large population of polar planets
 - Polar planets are hard to detect (geometry & time)
- The habitability of these planets is rather different...