Back-reaction of dust on gas in protoplanetary discs: crucial, yet often overlooked

Jean-François Gonzalez
Guillaume Laibe
Centre de Recherche Astrophysique de Lyon, France

Sarah Maddison
Swinburne University of Technology, Melbourne, Australia

Gas and dust dynamics

Sub-Keplerian gas drags Keplerian dust ⇒ dust settling and drift

$$v_{\rm g,r} = \frac{\epsilon \mathrm{St}}{(1+\epsilon)^2 + \mathrm{St}^2} \, v_{\rm drift} + \frac{1+\epsilon + \mathrm{St}^2}{(1+\epsilon)^2 + \mathrm{St}^2} \, v_{\rm visc}$$
 radial velocities
$$v_{\rm d,r} = \frac{\mathrm{St}}{(1+\epsilon)^2 + \mathrm{St}^2} \, v_{\rm drift} + \frac{1+\epsilon}{(1+\epsilon)^2 + \mathrm{St}^2} \, v_{\rm visc}$$
 optimal drift velocity gas viscous velocity (Nakagawa+1986) (Lynden-Bell+Pringle1974)

- ullet Dynamics controlled by the Stokes number $\mathrm{St}=rac{\Omega_{\mathrm{K}}
 ho_{\mathrm{s}}s}{
 ho_{\mathrm{g}}c_{\mathrm{s}}}$ and $\epsilon=rac{
 ho_{\mathrm{dust}}}{
 ho_{\mathrm{gas}}}$
- $\epsilon = 0 \Rightarrow$ equations without back-reaction
- $\epsilon \neq 0 \Rightarrow$ effects of back-reaction
 - slows down dust radial drift
 - modifies the gas motion
- Consequences
 - Streaming instability
 - Self-induced dust traps

Youdin+Goodman2005, Johansen+2007, Bai+Stone2010, Yang+Johansen2014, Drążkowska+Dullemond2014

Gas and dust radial velocities

Maps of
$$\frac{v_r}{|v_{\rm visc}|}$$
 for α = 10⁻²

Practical case: a circumprimary disc in a binary star system

SPH simulations, gas + 1 mm grains

Careful when interpreting observations!