Molecular complexity in the star forming region W43-MM1
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W43-MM1 is a massive star forming region, located at a distance of 5.5 kpc from the Sun in the constellation Aquila, at the
edge of the Galaxy bar. It is one of the most active region in the Milky Way regarding star formation and as such is
qualified as a "mini-starburst" (SFR = 6000 MyMyr?). It includes an important sample of molecular cores of various masses
at various evolutionary stages. It is thus interesting to study the distribution of molecules in the different cores and to
search for complex molecules in order to characterize the cores and constrain chemical models. For this, we use 4 GHz of
high spatial resolution (0.5" = 2400AU) data mosaic (33 fields) from ALMA+ACA cycle 2/3 at 1.3mm.
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MOLECULAR COMPLEXITY

Core #9
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CONCLUSION

The two close high-mass cores #3 and 6, with large masses (x<60M), and small diameters (*1300AU), are the densest
cores detected so far. Whereas core #3 appears to be a hot core, core #6 is less evolved and possibly the densest starless
core known. Despite it shows no clear sign of protostellar activity, from the molecular content and the derived
temperature it could in fact be a young high-mass protostellar core. The modelisation of the source is in progress.
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