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Introduction 
Strong lensing valuable tool to probe the 
inner structure of massive galaxies. 

•  Along with stellar kinematics and Stellar 
Population Synthesis tools: 

•  accurate balance of dark/stellar matter  
•  Inner slopes: cups/core, halo response 

•  Deflectors out to z~1. 

•  Better handle on formation scenarii (dry/wet 
mergers, role of minor/major mergers…) 

Weak lensing most suitable for the outskirts (halo) 
•  Probing mass out to virial radius and beyond 
•  EVERY galaxy is a WEAK lens! 
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The SLACS: largest sample of low redshift lens galaxies (N~80) using: 
•  SDSS spectra (yielding zl, zs, and velocity disp.) 
•  HST follow-up imaging 



Strong Lensing Legacy Survey     

4 patches: 150 deg2  (u,g,r,i,z),  IAB=24.5 

170 deg2  

u*g'r'i'z' Wide Survey 

Redshift evolution hardly probed because of few z>0.4 lenses. 

One way to go further in redshift… 



Foreground deflectors: red ETGs 
Background sources:  blue star-forming faint blobs.  
 
Efficient lens light subtraction technique: 
 g-αi difference imaging. Tune α to remove ETG (after 
agressive PSF matching g*si – α i*sg) 
 
Processing time for the whole CFHTLS… (2 
CPU.week / 150deg2  , ie 2 CPU. Hour/deg2) 
 
Visual inspection of 1.4x104 candidates  (1-2 days). 
 
Selection of 330 good candidates in the CFHTLS 

N=3700 deg-2 

N=2.4 deg-2 

RingFinder  

Sources 

Gavazzi++14 

 
 ✔ 

✖ 

Refinement with visual inspection 
-> less false positives……….           But HST follow-up is the referee! 
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Forecasting the number of lenses 
 
For sources i<25, we simulate CFHTLS mock fg deflector + bg source 

   
                                                    per deg2 

Table 2: Predicted global statistics of simulated
lenses.

µ > 4 µ > 2

# of existing lenses 8.6 44.3
q flag � 0 � 2 � 3 � 0 � 2 � 3

# of selected candidates 12.5 6.4 2.5 12.5 6.4 2.5
# of selected lenses 3.6 3.4 2.1 7.9 5.8 2.5
completeness (%) 42 39 25 18 13 6
purity (%) 29 53 84 63 91 100

Notes: Lensing events per square degree involving a source

brighter than i = 25 and a foreground lensing ETG brighter

than i = 22. The first row indicates the number of lenses

predicted to exist per square degree in the sky, the second

row shows the number of systems the RingFinder recov-

ers, and the third row presents the number of actual lenses

among these. For each magnification threshold chosen as

a criterion for lensing, the q flag � 0 columns refers to

the statistics directly after the automated procedure while

the q flag � 2 and q flag � 3 refer to the quality level as-

signed during visual classification. For each value of q flag

we calculate completeness and purity at the ratio of first to

third row and the ratio of the third to second row listing

numbers per square degree.

per square degree, RingFinder will automati-
cally detect 12.5 lens candidates. Among these,
only 3.6 will be actual lenses magnified by µ � 4.
In other words, of the 8.6 lenses existing in a given
square degree of the sky (top row of Table 2), 3.6
of them will be actual lenses, these lenses being
detected as the same time as (12.5 � 3.6 = 8.9)
spurious non-lenses. We thus conclude that the
direct application of the automated procedure will
achieve a completeness of 3.6/8.6 ' 42%. There-
fore, we see that the method performs better for
the most interesting lens systems. Conversely, we
achieve a low purity rate of 29%.

These global statistics can be better understood
by viewing Figure 4 where we overlay the distribu-
tion of some important observable or hidden pa-
rameters for the population of lenses (solid black),
the population of recovered candidates (dashed
red) and the population of recovered true lenses
(solid red). The ratio of the solid red curve to the
solid black curve should thus illustrate the com-
pleteness, while the ratio of the solid red curve to
the dashed red curves gives the purity. In partic-

ular, we see that:

• The systems having their most distant
lensed image lying at radius ✓

1

in the range
1 � 2.005 are well recovered, and, there, the
purity is maximum. Beyond ✓

1

⇠ 300, the
RingFinder radial exploration range would
need to be changed in order to catch these
very few lenses. However we can extrapolate
that many false positives would also enter
the detection sample, and would therefore
swamp the very few large separation lenses.
On small scales both purity and complete-
ness are di�cult to achieve for ✓

1

< 100.

• For a magnification µ > 4, the completeness
does not change much with µ. Obviously,
by construction, all the recovered non-lenses
are systems experiencing µ < 4.

• Again, the source redshift has a very limited
impact on the recovery rate. We however
notice that the low redshift z

s

. 1 sources
have a substantial contribution to the spuri-
ous detections.

• RingFinder systematically misses the small
red tail of the population of sources; other-
wise, the purity and completeness are quite
constant in the range 0 . (g � i)

s

. 1.2.

• The completeness and purity are maximized
for the bright arcs having g < 23 and,
at fainter magnitudes, many spurious sys-
tem enter the sample (but are not magnified
much) and the completeness rapidly falls o↵.

• The source size only has a mild impact
on purity and completeness. We only see
marginal evidence for the few large sources,
that cannot lead to high magnifications, con-
tributing to reducing the purity of large arcs
(that do result from high magnification).

• The completeness is maximized for Einstein
radii between 1 and 200. Below 100, the
purity becomes poor, but it can get close
to unity for R

Ein

& 1.006. Conversely, the
completeness decreases for R

Ein

� 200 and
R

Ein

. 100 because of the limited analysis
range of RingFinder, as already noted for
✓
1

.

21
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Fig. 4.— Statistics of recovery of simulated strong lenses for various sets of relevant parameters/observables within one square degree
of the sky. The lenses are defined with the µ ⇥ 4 criterion. From top left to bottom right, panels show the statistical dependency on
the position of the furthest (and brightest) of the multiple images ⇥1, the Einstein Radius REin, the magnification µ, the source position
�, the arc (magnified) g band magnitude, the source half-light radius, the source (g � i) color index, the source redshift, the lens i band
magnitude, the lens half-light radius, and finally the lens redshift. In each panel, we show the distribution of all the lenses (solid black),
the distribution of the candidates the algorithm automatically finds (dashed red), and among them, the distribution of the ones that are
actual lenses. The additional loss of candidates produced by the sebsequent level of selection (human inspection keeping only q flag ⇥ 3
systems), is shown in green (solid for the actual lenses, and dashed for all the candidates).

The application of the RingFinder pipeline with the
settings presented in § 3 will obviously change the above
statistics. Not all the lenses will be detected (loss of
completeness) and some non-lenses will enter the sample
(loss of purity). Before the visual inspection step detailed
in § 3.3, RingFinder yields the numbers shown in the
q flag ⇤ 0 columns of Table 1. We can see that, per
square degree, RingFinder will automatically detect
12.5 lens candidates. Among them only 3.6 (resp. 7.9)
will be actual lenses magnified by µ ⇤ 4 (resp. µ ⇤ 2).
We thus conclude that the direct application of the au-
tomated procedure will achieve a completeness of 42%
(resp. 18%) for µ ⇤ 4 (resp. µ ⇤ 2). Therefore, we see
that the method performs better for the most interesting
lens systems. Conversely, a purity of 29% is quite low for
the µ ⇤ 4 case and it increases to 63% for µ ⇤ 2.
These global statistics are better understood in Fig. 4

where we overlaid the distribution of some important
observable or hidden paramaters for the population of
lenses (solid black), the population of recovered candi-
dates (dashed red) and the population of recovered true
lenses (solid red). In particular, we see that

• the systems with a far lensed image distance to the
center �1 in the range 1�2.��5 are well recovered and,
there, the purity is maximum. Beyond �1 ⌅ 3��,
the RingFinder radial exploration range should
be changed to get these very few lenses. However
we can extrapolate that many false positives would
also inter the detection sample and would therefore
highly swamp the very few large separation lenses.
On small scales both purity and completeness are
di⇥cult to achieve for �1 � 1��.

• for a magnification µ > 4 the completeness does
not change much. Obviously, by construction, all
the recovered non-lenses are systems experiencing
µ < 4.

• that, again, the source redshift has a very limited
impact on the recovery rate. We however notice
that the low redshift zs � 1 sources have a sub-
stantial contribution to the spurious detections.

• RingFinder systematically misses the small red
tail of population of sources and that the purity



+Spectra 

⇒  Lens redshift (~80) 
⇒  Source redshift (~38) 
⇒  Velocity dispersion (~55).  

UV-B VIS NIR 

Full R~5000 coverage from 350nm 
to 2.2µm. Most suitable for  mean  
source redshift ~2.1   

VLT-Xshooter  
       (19 systems) 

Keck/LRIS 
(46 systems) 

l  65 observed.  
l  27 confirmed to be actual 

lenses from this imaging,  
l  success rate >= 50% and 

increasing with time. 
 

+HST imaging 
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SL2S: modeling of pilot SL2S galaxy-scale lens sample 5

Fig. 2.— Results of the lens modeling analysis. For each row, a system is shown with, from left to right, lensed features with the deflector
subtracted o� with galfit (data), the best fit model prediction (model), the residual (data-model) and the associated source plane light
distribution. The critical lines are overlaid in the first three panels whereas the caustics lines are shown in the last one.

SL2S observational results 



(No)-Evidence for steepening with time 

Evolution of the internal structure of massive galaxies 15

Fig. 10.— Posterior probability distribution function for the model parameters of equation (2). Empty contours: Inference with SL2S
galaxies only. Filled contours: SL2S + SLACS + LSD lenses. The different levels represent the 68%, 95% and 99.7% enclosed probability
regions.

TABLE 4
Linear model with scatter.

Parameter SL2S SL2S + Notes
only SLACS + LSD

logM∗,0(SL2S) 11.50+0.05
−0.05 11.49+0.05

−0.05 Mean stellar mass at z = 0.5, SL2S sample

ζ(SL2S) 0.35+0.34
−0.33 0.38+0.26

−0.26 Linear dependence of mean stellar mass on redshift, SL2S sample

σ
(SL2S)
M∗

0.25+0.05
−0.04 0.23+0.04

−0.04 Scatter in mean stellar mass, SL2S sample

logM∗,0(SLACS) · · · 11.59+0.03
−0.03 Mean stellar mass at z = 0.2, SLACS sample

ζ(SLACS) · · · 2.35+0.39
−0.39 Linear dependence of mean stellar mass on redshift, SLACS sample

σ
(SLACS)
M∗

· · · 0.17+0.02
−0.02 Scatter in mean stellar mass, SLACS sample

α −0.13+0.24
−0.24 −0.31+0.09

−0.10 Linear dependence of γ′ on redshift.

β 0.31+0.23
−0.23 0.40+0.16

−0.15 Linear dependence of γ′ on logM∗.

ξ −0.67+0.20
−0.20 −0.76+0.15

−0.15 Linear dependence of γ′ on logReff .

γ0 2.05+0.06
−0.06 2.08+0.02

−0.02 Mean slope at z = 0.3, logM∗ = 11.5, Reff = 5 kpc

σγ′ 0.14+0.04
−0.03 0.12+0.02

−0.02 Scatter in the γ′ distribution
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galaxies only. Filled contours: SL2S + SLACS + LSD lenses. The different levels represent the 68%, 95% and 99.7% enclosed probability
regions.
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Fig. 6.— Relative di�erence between the critical surface mass
density inferred via photogeometric redshift and the true one, as
a function of the lens redshift. Filled dots are measurements from
the seven lenses with X-Shooter data and no previous spectroscopic
observation also plotted in Figure 4. The gray band shows the
10% uncertainty, which is equal to the typical contribution to the
uncertainty on MEin coming from the measurement of the Einstein
radius.

Fig. 7.— E�ective radius, stellar mass and velocity dispersion of
lenses as a function of redshift. The solid line shows the best fit
linear relation y = az + b to the SL2S lenses only.

and Bolton et al. (2012) and suggests that the mass dis-
tribution within massive ETGs is a function of redshift.
However, before drawing this conclusion we need to make
sure that the trend we observe in �⇥ is not the result of a
selection e�ect, or that our method of measuring the den-
sity slope does not introduce biases. From the analysis
of Section 5 we see that the average stellar mass of our
sample of lenses increases with redshift. Then the ob-
served trend in �⇥ would reflect the trend in stellar mass
if �⇥ was a decreasing function of M�. To verify that this
is not the case we plot �⇥ versus stellar mass in Figure 10.
We point out that the measurements of these two quan-
tities are practically independent from each other: the
only observable that a�ects both measurements is the
e�ective radius, but both M� and �⇥ depend mildly on
Re� . No correlation is found between M� and �⇥.
Another possible concern is that the physical scale

probed by strong lensing, the Einstein radius, increases

Fig. 8.— Mass-normalized radius, defined following ? as the
e�ective radius divided by M�

11, where M11 is the stellar mass in
units of 1011M�, as a function of redshift. The dotted line is the
mean evolution with redshift of the mass-normalized radius found
by ?

Fig. 9.— labelfig:gammaprime Density slope as a function of
redshift for SL2S, SLACS and LSD galaxies. The red dashed line
shows the most probable linear fit to SL2S data alone, while the
solid black line is the same fit to the full sample including SLACS
and LSD lenses.

with increasing lens redshift from a pure geometrical ef-
fect. Therefore the value of �⇥ measured when fitting a
power-law density profile will be representative of the av-
erage slope within larger physical radii at higher redshift.
This would not be a problem if the true density profile
of ETGs was exactly a power-law. However, theoreti-
cal arguments suggest that this is unlikely. In fact, the
density slope is observed to flatten around the e�ective
radius (Sonnenfeld et al. 2012), as the dark matter halo
starts to become the dominant mass component. In order
to gauge the importance of this trend on the physical size
probed by the Einstein radius, we plot in Figure 11 the
slope �⇥ as a function of the Einstein radius scaled by the
e�ective radius. If we fit a linear relation between the two
quantities we find only a very mild evolution. However
the fit is heavily dependent on few datapoints at large
REin/Re� . A close look at the data at REin/Re� � 3,
where most of the lenses lie, shows a noticeable trend

Evolution of the internal structure of massive galaxies 15

Fig. 10.— Posterior probability distribution function for the model parameters of equation (2). Empty contours: Inference with SL2S
galaxies only. Filled contours: SL2S + SLACS + LSD lenses. The different levels represent the 68%, 95% and 99.7% enclosed probability
regions.
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Fig. 4.— Effective radius, stellar mass and velocity dispersion of
lenses as a function of redshift.

Fig. 5.— Effective radius vs. stellar mass, where Reff values have
been corrected for the evolution in the mass-size relation measured
by Newman et al. (2012): logReff(z = 0) = logReff + 0.26z. The
dashed line indicates the mass-radius relation for SDSS galaxies
measured by Newman et al. (2012).

have a finite mass) suggest that the true density pro-
file deviates from a pure power law, particularly at large
radii. Thus our power law fits to the lensing and kine-
matics data must be interpreted as an approximation of
the average density slope over a radial range explored by
our data. Since for a typical lens both the Einstein ra-
dius and the velocity dispersion probe the region within
the effective radius, we expect that the inferred γ′ will be
close to the mean density slope within Reff , as suggested
by Dutton & Treu (2013).
However we would like to be more quantitative and

explore the two following questions: what kind of aver-
age over the true density profile ρ(r) best reproduces
the lensing+dynamics γ′? How sensitive to the ratio
REin/Reff is the measured γ′ for a fixed galaxy mass pro-
file? The former issue is relevant when comparing the-
oretical models to lensing and dynamics measurements.
The latter is important when trying to measure trends of
γ′ with redshift: the ratio REin/Reff typically increases
for purely geometrical reasons, and a dependence of γ′

on REin/Reff could in principle bias the inference on the

Fig. 6.— Solid lines: Local logarithmic density slope as a func-
tion of 3d radius, in units of the effective radius. Dashed lines:
mass-weighted density slope within radius r. Triangles: lens-
ing+dynamics γ′ for REin = r. Different colors indicate the differ-
ent model mass profiles listed in the body text.

evolution of the slope. In order to answer these ques-
tions we simulate γ′ measurements on a broad range of
model mass profiles and compare these with the true den-
sity slopes. We consider a pure de Vaucouleurs profile,
a sum of a de Vaucouleurs profile with a Navarro, Frenk
& White (Navarro et al. 1997) profile with two values of
the dark matter mass fraction fDM within the 3d effec-
tive radius, and the most probable total density profile
from the bulge + halo decomposition of the gravitational
lens SDSSJ0946+1006 by Sonnenfeld et al. (2012). None
of these model profiles is a pure power law. We empha-
size that the range of models is chosen to be broader
than what is likely to be found in real galaxies based on
the detailed analysis of SLACS systems by Barnabè et al.
(2011).
We again use the spherical Jeans equation to calculate

the central velocity dispersion for each of these model
galaxies and then fit power law density profiles with
fixed total projected mass within different Einstein radii.
These simulated measurements of γ′ are plotted in Fig-
ure 6 as a function of REin/Reff for each model profile.
In the same plot we show the local logarithmic density
slope −d log ρ/d log r as a function of r, and also the
mass-weighted density slope within radius r

⟨γ′(r)⟩M =
1

M(r)

∫ r

0
γ′(r′)4πr2ρ(r′)dr′, (1)

which has been suggested by Dutton & Treu (2013) to
be a good proxy for the lensing + dynamics γ′.
Figure 6 shows that measurements of γ′ (triangles) are

remarkably independent of the ratio of the Einstein ra-
dius to the effective radius, for all models. This is an
important result: it means that the physical interpreta-
tion of γ′ measurements will be stable against different
lenses having different values of REin/Reff . Excluding the
pure de Vaucouleurs model, which is ruled out on many
grounds (mass-follows light models fail to reproduce lens-
ing and dynamical data, for example Koopmans & Treu
2003), the difference between the mass-weighted slope
and the lensing and dynamics slope is generally smaller
than the typical measurement errors on γ′ of ∼ 0.1, par-
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sider all the terms of the equation before reaching a con-
clusion. Fortunately this can be done by combining our
measurements with results from the literature.
In the context of our model specified in Equation 2, the

partial derivatives introduced above can be identified and
evaluated as follows:

∂γ′

∂z
= α = −0.31± 0.10, (8)

∂γ′

∂ logM∗
= β = 0.40± 0.16, (9)

∂γ′

∂ logReff
= ξ = −0.76± 0.15. (10)

Note that we are not considering the effects of scatter:
we are assuming that the change in γ′ is the same as
that of a galaxy that evolves while staying at the mean
γ′ as it moves through the (z,M∗, Reff) space. By doing
so, the evolution in the slope that we derive from Equa-
tion 7 will be representative of the mean change in γ′

over the population, while individual objects can have
different evolutionary tracks, within the limits allowed
by our constraints on σγ′ .
The remaining quantities to be estimated are the rate

of mass and size growth. In the hierarchical merging
picture ETGs are expected to grow in stellar mass with
time, therefore dM∗/dz < 0. Observationally, we know
massive early-type galaxies grow at most by a factor of
two in stellar mass since z = 1 (see, e.g., Lin et al. 2013,
and references therein). Thus we can conservatively take
the mean between zero and 2, even though we will show
below that our conclusion are virtually insensitive to this
choice:

d logM∗
dz

= −0.15± 0.15. (11)

The effective radius grows as a result of the
growth in mass, but is itself an evolving quantity at
fixed M∗ (Damjanov et al. 2011; Newman et al. 2012;
Cimatti et al. 2012; Poggianti et al. 2013): Reff =
Reff(z,M∗(z)). We assume that ETGs grow while stay-
ing on the observed M∗−Reff relation at all times. Then
we can write

d logReff

dz
=

∂ logReff

∂z
+

∂ logReff

∂ logM∗

d logM∗
dz

(12)

and use the values measured by Newman et al. (2012),
∂ logReff/∂z = −0.26 ± 0.02 and ∂ logReff/∂logM∗ =
0.59± 0.07.
Plugging these values into Equation 7 we find that

dγ′

dz
= (−0.31± 0.10) + (0.40± 0.15)(−0.15± 0.15)

+(−0.76± 0.15)[(−0.26± 0.02)

+(−0.15± 0.15)(0.59± 0.07)] = −0.10± 0.12
(13)

Note that dγ′/dz has little dependence on the mass
growth rate d logM∗/dz, which is the most poorly known
quantity in this model. To be more quantitative we plot
in Figure 11 the total derivative dγ′/dz as a function
of d logM∗/dz, and show that for any plausible value,

Fig. 11.—Mean intrinsic change of the density slope with redshift
of a massive ETG, as a function of its mass growth rate.

spanning over an order of magnitude, the answer is un-
changed. Different assumptions on the evolution of the
size-mass relation do not change significantly our result.
For instance, Damjanov et al. (2011) find a more rapid
evolution of Reff than Newman et al. (2012), leading to
dγ′/dz = 0.06 ± 0.15, consistent with no change of the
total mass density profile with time.
Thus, the key result is that, when considering all the

terms of Equation 7, we find that, on average, individ-
ual ETGs grow at approximately constant density slope.
The observed redshift dependence of γ′ at fixed mass and
size can then be understood as the result of the evolution
of the size-mass relation and by the dependency of γ′ on
the stellar mass density. Qualitatively, in this picture an
individual galaxy grows in stellar mass and size so as to
decrease its central stellar mass density. During this pro-
cess, the slope of its total mass density profile does not
vary significantly. However the other galaxies that now
find themselves to have the original stellar mass and ef-
fective radius of this galaxy had originally a steeper mass
density profile, thus giving rise to the observed trend in
∂γ′/∂z.
This is illustrated in Figure 12, where we show a pos-

sible scenario consistent with the observations. The evo-
lutionary tracks of two representative galaxies between
z = 1 and z = 0 are shown as solid black arrows, in
the multi-dimensional parameter space of stellar mass,
effective radius, effective density, and slope of the mass
density profile γ′. The two galaxies are chosen so that
one has at z = 1 the same mass and effective radius that
the other has at z = 0. Mass and size are evolved fol-
lowing Equation 11 and Equation 12. We then assign
γ′ at z = 0 based on the observed correlation with size
and stellar mass (effectively with effective stellar mass
density, since β ≈ −2ξ) and assume it does not evolve
for an individual galaxy. The apparent evolution of γ′ at
fixed M∗ and Reff is consistent with the measured value
∂γ′/∂z = −0.29 ± 0.10, and is dictated by a difference
in the initial stellar density of their progenitors, being
larger for the more massive object.
In the context of simple one-parameter stellar profiles

(e.g. de Vaucouleurs), this difference in γ′ at fixed mass
and size for galaxies at different redshift must be ascribed
to corresponding differences in the underlying dark mat-

High-z sample is not the progenitor of low-z one! 
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1987; Dressler et al. 1987). Two parameters are then
probably sufficient to capture the variation of γ′ across
the population of ETGs. For our analysis we focus on
stellar mass and effective radius (this includes also de-
pendencies on stellar mass density, which is believed
to be an important parameter driving γ′, as discussed
above). Our objective is then to measure the trends
in γ′ across the three-dimensional space defined by
(z,M∗, Reff). This is done with a simple but rigorous
Bayesian inference method. We assume that the values
of the slope γ′ of our lenses are drawn from a Gaussian
distribution with mean given by

⟨γ′⟩ = γ′
0 +α(z− 0.3) + β(logM∗ − 11.5) + ξ log (Reff/5)

(2)
and dispersion σγ′ . The stellar mass is in solar units
and the effective radius in kpc. We also assume that
individual stellar masses M∗,i are drawn from a parent
distribution that we approximate as a Gaussian:

Pr(M∗,i) =
1

σM∗

√
2π

exp

⎡

⎣−

(
logM∗,i − µ(Samp)

M∗
(zi)

)

2σ2(Samp)
M∗

⎤

⎦.

(3)
To account for selection effects, we allow for a different
mean stellar mass and dispersion for lenses of different
surveys. We also let the mean stellar mass be a function
of redshift. This choice reflects the clear trend of stellar
mass with redshift seen in Figure 4 for both the SLACS
and the SL2S samples, which in turn is determined by
SLACS and SL2S both being magnitude-limited samples.
The parameter describing the mean stellar mass is then

µ(SLACS)
M∗

= ζ(SLACS)(zi − 0.2) + logM∗,0
(SLACS) (4)

for SLACS galaxies and

µ(SL2S)
M∗

= ζ(SL2S)(zi − 0.5) + logM∗,0
(SL2S) (5)

for SL2S and LSD galaxies. We assume flat priors on all
the model parameters and fit for them with a Markov
chain Monte Carlo following Kelly (2007). The stel-
lar masses considered in this model are those measured
in Paper III assuming a Salpeter IMF. The full poste-
rior probability distribution function is shown in Fig-
ure 10 and the median, 16th and 84th percentile of the
probability distribution for the individual parameters,
obtained by marginalizing over the remaining param-
eters, is given in Table 4. The fit is done first with
SL2S galaxies only and then repeated by adding SLACS
and LSD lenses. For six lenses of the SLACS sample
Auger et al. (2010a) warn that their velocity dispersions
might be significantly incorrect, and we conservatively
exclude them from our fit. These are SSDSJ0029−0055,
SDSSJ0737+3216, SDSSJ0819+4534, SDSSJ0935−0003,
SDSSJ1213+6708 and SDSSJ1614+4522.
By using only the 25 SL2S lenses for which γ′ mea-

surements are possible, we are able to detect a trend
of ⟨γ′⟩ with Reff at the 3-sigma level and a dependence
on M∗ at the 1-sigma level: at fixed z and M∗, galax-
ies with a smaller effective radius have a steeper density
profile. Similarly, at fixed Reff , galaxies with a larger
stellar mass have a marginally larger γ′. If we add 53
lenses from SLACS and 4 lenses from the LSD survey,
the trends with M∗ and Reff are confirmed at a higher

significance, and we detect a dependence of ⟨γ′⟩ on red-
shift at the 3-sigma level. Lower redshift objects appear
to have a steeper slope than higher redshift counterparts
at fixed mass and size. Incidentally, the median value
of ξ, the parameter describing the linear dependence of
⟨γ′⟩ on logReff , is nearly −2 times β, the parameter de-
scribing the dependence on logM∗. This suggests that
⟨γ′⟩ grows roughly as β log (M∗/R2

eff), which is equiva-
lent to the stellar mass density. It appears then that
the dependence of γ′ on the structure of ETGs can be
well summarized with a dependence on stellar mass den-
sity, leaving little dependence on M∗ or Reff individually.
This confirms and extends the trend with surface mass
density seen by Auger et al. (2010a) and Dutton & Treu
(2013).
We then repeated the fit allowing only for a dependence

of ⟨γ′⟩ on redshift and stellar mass density:

⟨γ′⟩ = γ0 + α(z − 0.3) + η(logΣ∗ − 9.0). (6)

This model has one less free parameter with respect to
Equation 2. Our inference on the parameter describing
the dependence on Σ∗ is η = 0.38 ± 0.07, and the scat-
ter in γ′ is σγ′ = 0.12 ± 0.02, the same value measured
for the more general model of Equation 2. This is again
suggesting that the dependence of γ′ on the stellar mass
density might be of a more fundamental nature than de-
pendences on mass and size separately.

7. DISCUSSION

The main result of the previous section is that the en-
semble average total mass density slope of galaxies of a
fixed stellar mass increases with cosmic time (i.e. de-
creases with redshift). This trend with redshift is de-
tected at the 3−σ confidence level and is in good agree-
ment with previous results from Ruff et al. (2011) and
Bolton et al. (2012).
Before discussing the physical interpretation of this re-

sult, however, it is important to emphasize that what we
are measuring is how the population mean density slope
changes in the (z,M∗, Reff) space within the population
of early-type galaxies, and not how γ′ changes along the
lifetime of an individual galaxy. In order to infer the lat-
ter quantity we need to evaluate the variation of γ′ along
the evolutionary track of the galaxy as this moves in the
(z,M∗, Reff) space. This requires to know how both mass
and size of the galaxy change with time, since the slope
depends on these parameters. More formally,

dγ′(z, logM∗, logReff)

dz
=

=
∂γ′

∂z
+

∂γ′

∂ logM∗

d logM∗
dz

+
∂γ′

∂ logReff

d logReff

dz
.

(7)

In a parallel with fluid mechanics, our description of the
population of galaxies of Section 5 is Eulerian, while
Equation 7 is a Lagrangian specification of the change in
time of the mean slope of an individual galaxy, providing
a more straightforward way to physically understand the
evolution of ETGs.
With all these terms entering Equation 7, it is no longer

clear if the density slope is indeed getting steeper with
time for individual objects. In particular, we have ob-
served that γ′ depends significantly on stellar mass den-
sity (and thus effective radius). It is then crucial to con-
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sider all the terms of the equation before reaching a con-
clusion. Fortunately this can be done by combining our
measurements with results from the literature.
In the context of our model specified in Equation 2, the

partial derivatives introduced above can be identified and
evaluated as follows:

∂γ′

∂z
= α = −0.31± 0.10, (8)

∂γ′

∂ logM∗
= β = 0.40± 0.16, (9)

∂γ′

∂ logReff
= ξ = −0.76± 0.15. (10)

Note that we are not considering the effects of scatter:
we are assuming that the change in γ′ is the same as
that of a galaxy that evolves while staying at the mean
γ′ as it moves through the (z,M∗, Reff) space. By doing
so, the evolution in the slope that we derive from Equa-
tion 7 will be representative of the mean change in γ′

over the population, while individual objects can have
different evolutionary tracks, within the limits allowed
by our constraints on σγ′ .
The remaining quantities to be estimated are the rate

of mass and size growth. In the hierarchical merging
picture ETGs are expected to grow in stellar mass with
time, therefore dM∗/dz < 0. Observationally, we know
massive early-type galaxies grow at most by a factor of
two in stellar mass since z = 1 (see, e.g., Lin et al. 2013,
and references therein). Thus we can conservatively take
the mean between zero and 2, even though we will show
below that our conclusion are virtually insensitive to this
choice:

d logM∗
dz

= −0.15± 0.15. (11)

The effective radius grows as a result of the
growth in mass, but is itself an evolving quantity at
fixed M∗ (Damjanov et al. 2011; Newman et al. 2012;
Cimatti et al. 2012; Poggianti et al. 2013): Reff =
Reff(z,M∗(z)). We assume that ETGs grow while stay-
ing on the observed M∗−Reff relation at all times. Then
we can write

d logReff

dz
=

∂ logReff

∂z
+

∂ logReff

∂ logM∗

d logM∗
dz

(12)

and use the values measured by Newman et al. (2012),
∂ logReff/∂z = −0.26 ± 0.02 and ∂ logReff/∂logM∗ =
0.59± 0.07.
Plugging these values into Equation 7 we find that

dγ′

dz
= (−0.31± 0.10) + (0.40± 0.15)(−0.15± 0.15)

+(−0.76± 0.15)[(−0.26± 0.02)

+(−0.15± 0.15)(0.59± 0.07)] = −0.10± 0.12
(13)

Note that dγ′/dz has little dependence on the mass
growth rate d logM∗/dz, which is the most poorly known
quantity in this model. To be more quantitative we plot
in Figure 11 the total derivative dγ′/dz as a function
of d logM∗/dz, and show that for any plausible value,

Fig. 11.—Mean intrinsic change of the density slope with redshift
of a massive ETG, as a function of its mass growth rate.

spanning over an order of magnitude, the answer is un-
changed. Different assumptions on the evolution of the
size-mass relation do not change significantly our result.
For instance, Damjanov et al. (2011) find a more rapid
evolution of Reff than Newman et al. (2012), leading to
dγ′/dz = 0.06 ± 0.15, consistent with no change of the
total mass density profile with time.
Thus, the key result is that, when considering all the

terms of Equation 7, we find that, on average, individ-
ual ETGs grow at approximately constant density slope.
The observed redshift dependence of γ′ at fixed mass and
size can then be understood as the result of the evolution
of the size-mass relation and by the dependency of γ′ on
the stellar mass density. Qualitatively, in this picture an
individual galaxy grows in stellar mass and size so as to
decrease its central stellar mass density. During this pro-
cess, the slope of its total mass density profile does not
vary significantly. However the other galaxies that now
find themselves to have the original stellar mass and ef-
fective radius of this galaxy had originally a steeper mass
density profile, thus giving rise to the observed trend in
∂γ′/∂z.
This is illustrated in Figure 12, where we show a pos-

sible scenario consistent with the observations. The evo-
lutionary tracks of two representative galaxies between
z = 1 and z = 0 are shown as solid black arrows, in
the multi-dimensional parameter space of stellar mass,
effective radius, effective density, and slope of the mass
density profile γ′. The two galaxies are chosen so that
one has at z = 1 the same mass and effective radius that
the other has at z = 0. Mass and size are evolved fol-
lowing Equation 11 and Equation 12. We then assign
γ′ at z = 0 based on the observed correlation with size
and stellar mass (effectively with effective stellar mass
density, since β ≈ −2ξ) and assume it does not evolve
for an individual galaxy. The apparent evolution of γ′ at
fixed M∗ and Reff is consistent with the measured value
∂γ′/∂z = −0.29 ± 0.10, and is dictated by a difference
in the initial stellar density of their progenitors, being
larger for the more massive object.
In the context of simple one-parameter stellar profiles

(e.g. de Vaucouleurs), this difference in γ′ at fixed mass
and size for galaxies at different redshift must be ascribed
to corresponding differences in the underlying dark mat-
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sider all the terms of the equation before reaching a con-
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of mass and size growth. In the hierarchical merging
picture ETGs are expected to grow in stellar mass with
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massive early-type galaxies grow at most by a factor of
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in Figure 11 the total derivative dγ′/dz as a function
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spanning over an order of magnitude, the answer is un-
changed. Different assumptions on the evolution of the
size-mass relation do not change significantly our result.
For instance, Damjanov et al. (2011) find a more rapid
evolution of Reff than Newman et al. (2012), leading to
dγ′/dz = 0.06 ± 0.15, consistent with no change of the
total mass density profile with time.
Thus, the key result is that, when considering all the

terms of Equation 7, we find that, on average, individ-
ual ETGs grow at approximately constant density slope.
The observed redshift dependence of γ′ at fixed mass and
size can then be understood as the result of the evolution
of the size-mass relation and by the dependency of γ′ on
the stellar mass density. Qualitatively, in this picture an
individual galaxy grows in stellar mass and size so as to
decrease its central stellar mass density. During this pro-
cess, the slope of its total mass density profile does not
vary significantly. However the other galaxies that now
find themselves to have the original stellar mass and ef-
fective radius of this galaxy had originally a steeper mass
density profile, thus giving rise to the observed trend in
∂γ′/∂z.
This is illustrated in Figure 12, where we show a pos-

sible scenario consistent with the observations. The evo-
lutionary tracks of two representative galaxies between
z = 1 and z = 0 are shown as solid black arrows, in
the multi-dimensional parameter space of stellar mass,
effective radius, effective density, and slope of the mass
density profile γ′. The two galaxies are chosen so that
one has at z = 1 the same mass and effective radius that
the other has at z = 0. Mass and size are evolved fol-
lowing Equation 11 and Equation 12. We then assign
γ′ at z = 0 based on the observed correlation with size
and stellar mass (effectively with effective stellar mass
density, since β ≈ −2ξ) and assume it does not evolve
for an individual galaxy. The apparent evolution of γ′ at
fixed M∗ and Reff is consistent with the measured value
∂γ′/∂z = −0.29 ± 0.10, and is dictated by a difference
in the initial stellar density of their progenitors, being
larger for the more massive object.
In the context of simple one-parameter stellar profiles

(e.g. de Vaucouleurs), this difference in γ′ at fixed mass
and size for galaxies at different redshift must be ascribed
to corresponding differences in the underlying dark mat-
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Fig. 10.— Posterior probability distribution function for the model parameters of equation (2). Empty contours: Inference with SL2S
galaxies only. Filled contours: SL2S + SLACS + LSD lenses. The different levels represent the 68%, 95% and 99.7% enclosed probability
regions.

TABLE 4
Linear model with scatter.

Parameter SL2S SL2S + Notes
only SLACS + LSD

logM∗,0(SL2S) 11.50+0.05
−0.05 11.49+0.05

−0.05 Mean stellar mass at z = 0.5, SL2S sample

ζ(SL2S) 0.35+0.34
−0.33 0.38+0.26

−0.26 Linear dependence of mean stellar mass on redshift, SL2S sample

σ
(SL2S)
M∗

0.25+0.05
−0.04 0.23+0.04

−0.04 Scatter in mean stellar mass, SL2S sample

logM∗,0(SLACS) · · · 11.59+0.03
−0.03 Mean stellar mass at z = 0.2, SLACS sample

ζ(SLACS) · · · 2.35+0.39
−0.39 Linear dependence of mean stellar mass on redshift, SLACS sample

σ
(SLACS)
M∗

· · · 0.17+0.02
−0.02 Scatter in mean stellar mass, SLACS sample

α −0.13+0.24
−0.24 −0.31+0.09

−0.10 Linear dependence of γ′ on redshift.

β 0.31+0.23
−0.23 0.40+0.16

−0.15 Linear dependence of γ′ on logM∗.

ξ −0.67+0.20
−0.20 −0.76+0.15

−0.15 Linear dependence of γ′ on logReff .

γ0 2.05+0.06
−0.06 2.08+0.02

−0.02 Mean slope at z = 0.3, logM∗ = 11.5, Reff = 5 kpc

σγ′ 0.14+0.04
−0.03 0.12+0.02

−0.02 Scatter in the γ′ distribution
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Fig. 10.— Posterior probability distribution function for the model parameters of equation (2). Empty contours: Inference with SL2S
galaxies only. Filled contours: SL2S + SLACS + LSD lenses. The different levels represent the 68%, 95% and 99.7% enclosed probability
regions.
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Linear model with scatter.

Parameter SL2S SL2S + Notes
only SLACS + LSD
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Fig. 6.— Relative di�erence between the critical surface mass
density inferred via photogeometric redshift and the true one, as
a function of the lens redshift. Filled dots are measurements from
the seven lenses with X-Shooter data and no previous spectroscopic
observation also plotted in Figure 4. The gray band shows the
10% uncertainty, which is equal to the typical contribution to the
uncertainty on MEin coming from the measurement of the Einstein
radius.

Fig. 7.— E�ective radius, stellar mass and velocity dispersion of
lenses as a function of redshift. The solid line shows the best fit
linear relation y = az + b to the SL2S lenses only.

and Bolton et al. (2012) and suggests that the mass dis-
tribution within massive ETGs is a function of redshift.
However, before drawing this conclusion we need to make
sure that the trend we observe in �⇥ is not the result of a
selection e�ect, or that our method of measuring the den-
sity slope does not introduce biases. From the analysis
of Section 5 we see that the average stellar mass of our
sample of lenses increases with redshift. Then the ob-
served trend in �⇥ would reflect the trend in stellar mass
if �⇥ was a decreasing function of M�. To verify that this
is not the case we plot �⇥ versus stellar mass in Figure 10.
We point out that the measurements of these two quan-
tities are practically independent from each other: the
only observable that a�ects both measurements is the
e�ective radius, but both M� and �⇥ depend mildly on
Re� . No correlation is found between M� and �⇥.
Another possible concern is that the physical scale

probed by strong lensing, the Einstein radius, increases

Fig. 8.— Mass-normalized radius, defined following ? as the
e�ective radius divided by M�

11, where M11 is the stellar mass in
units of 1011M�, as a function of redshift. The dotted line is the
mean evolution with redshift of the mass-normalized radius found
by ?

Fig. 9.— labelfig:gammaprime Density slope as a function of
redshift for SL2S, SLACS and LSD galaxies. The red dashed line
shows the most probable linear fit to SL2S data alone, while the
solid black line is the same fit to the full sample including SLACS
and LSD lenses.

with increasing lens redshift from a pure geometrical ef-
fect. Therefore the value of �⇥ measured when fitting a
power-law density profile will be representative of the av-
erage slope within larger physical radii at higher redshift.
This would not be a problem if the true density profile
of ETGs was exactly a power-law. However, theoreti-
cal arguments suggest that this is unlikely. In fact, the
density slope is observed to flatten around the e�ective
radius (Sonnenfeld et al. 2012), as the dark matter halo
starts to become the dominant mass component. In order
to gauge the importance of this trend on the physical size
probed by the Einstein radius, we plot in Figure 11 the
slope �⇥ as a function of the Einstein radius scaled by the
e�ective radius. If we fit a linear relation between the two
quantities we find only a very mild evolution. However
the fit is heavily dependent on few datapoints at large
REin/Re� . A close look at the data at REin/Re� � 3,
where most of the lenses lie, shows a noticeable trend
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Fig. 10.— Posterior probability distribution function for the model parameters of equation (2). Empty contours: Inference with SL2S
galaxies only. Filled contours: SL2S + SLACS + LSD lenses. The different levels represent the 68%, 95% and 99.7% enclosed probability
regions.
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Fig. 4.— Effective radius, stellar mass and velocity dispersion of
lenses as a function of redshift.

Fig. 5.— Effective radius vs. stellar mass, where Reff values have
been corrected for the evolution in the mass-size relation measured
by Newman et al. (2012): logReff(z = 0) = logReff + 0.26z. The
dashed line indicates the mass-radius relation for SDSS galaxies
measured by Newman et al. (2012).

have a finite mass) suggest that the true density pro-
file deviates from a pure power law, particularly at large
radii. Thus our power law fits to the lensing and kine-
matics data must be interpreted as an approximation of
the average density slope over a radial range explored by
our data. Since for a typical lens both the Einstein ra-
dius and the velocity dispersion probe the region within
the effective radius, we expect that the inferred γ′ will be
close to the mean density slope within Reff , as suggested
by Dutton & Treu (2013).
However we would like to be more quantitative and

explore the two following questions: what kind of aver-
age over the true density profile ρ(r) best reproduces
the lensing+dynamics γ′? How sensitive to the ratio
REin/Reff is the measured γ′ for a fixed galaxy mass pro-
file? The former issue is relevant when comparing the-
oretical models to lensing and dynamics measurements.
The latter is important when trying to measure trends of
γ′ with redshift: the ratio REin/Reff typically increases
for purely geometrical reasons, and a dependence of γ′

on REin/Reff could in principle bias the inference on the

Fig. 6.— Solid lines: Local logarithmic density slope as a func-
tion of 3d radius, in units of the effective radius. Dashed lines:
mass-weighted density slope within radius r. Triangles: lens-
ing+dynamics γ′ for REin = r. Different colors indicate the differ-
ent model mass profiles listed in the body text.

evolution of the slope. In order to answer these ques-
tions we simulate γ′ measurements on a broad range of
model mass profiles and compare these with the true den-
sity slopes. We consider a pure de Vaucouleurs profile,
a sum of a de Vaucouleurs profile with a Navarro, Frenk
& White (Navarro et al. 1997) profile with two values of
the dark matter mass fraction fDM within the 3d effec-
tive radius, and the most probable total density profile
from the bulge + halo decomposition of the gravitational
lens SDSSJ0946+1006 by Sonnenfeld et al. (2012). None
of these model profiles is a pure power law. We empha-
size that the range of models is chosen to be broader
than what is likely to be found in real galaxies based on
the detailed analysis of SLACS systems by Barnabè et al.
(2011).
We again use the spherical Jeans equation to calculate

the central velocity dispersion for each of these model
galaxies and then fit power law density profiles with
fixed total projected mass within different Einstein radii.
These simulated measurements of γ′ are plotted in Fig-
ure 6 as a function of REin/Reff for each model profile.
In the same plot we show the local logarithmic density
slope −d log ρ/d log r as a function of r, and also the
mass-weighted density slope within radius r

⟨γ′(r)⟩M =
1

M(r)

∫ r

0
γ′(r′)4πr2ρ(r′)dr′, (1)

which has been suggested by Dutton & Treu (2013) to
be a good proxy for the lensing + dynamics γ′.
Figure 6 shows that measurements of γ′ (triangles) are

remarkably independent of the ratio of the Einstein ra-
dius to the effective radius, for all models. This is an
important result: it means that the physical interpreta-
tion of γ′ measurements will be stable against different
lenses having different values of REin/Reff . Excluding the
pure de Vaucouleurs model, which is ruled out on many
grounds (mass-follows light models fail to reproduce lens-
ing and dynamical data, for example Koopmans & Treu
2003), the difference between the mass-weighted slope
and the lensing and dynamics slope is generally smaller
than the typical measurement errors on γ′ of ∼ 0.1, par-
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sider all the terms of the equation before reaching a con-
clusion. Fortunately this can be done by combining our
measurements with results from the literature.
In the context of our model specified in Equation 2, the

partial derivatives introduced above can be identified and
evaluated as follows:

∂γ′

∂z
= α = −0.31± 0.10, (8)

∂γ′

∂ logM∗
= β = 0.40± 0.16, (9)

∂γ′

∂ logReff
= ξ = −0.76± 0.15. (10)

Note that we are not considering the effects of scatter:
we are assuming that the change in γ′ is the same as
that of a galaxy that evolves while staying at the mean
γ′ as it moves through the (z,M∗, Reff) space. By doing
so, the evolution in the slope that we derive from Equa-
tion 7 will be representative of the mean change in γ′

over the population, while individual objects can have
different evolutionary tracks, within the limits allowed
by our constraints on σγ′ .
The remaining quantities to be estimated are the rate

of mass and size growth. In the hierarchical merging
picture ETGs are expected to grow in stellar mass with
time, therefore dM∗/dz < 0. Observationally, we know
massive early-type galaxies grow at most by a factor of
two in stellar mass since z = 1 (see, e.g., Lin et al. 2013,
and references therein). Thus we can conservatively take
the mean between zero and 2, even though we will show
below that our conclusion are virtually insensitive to this
choice:

d logM∗
dz

= −0.15± 0.15. (11)

The effective radius grows as a result of the
growth in mass, but is itself an evolving quantity at
fixed M∗ (Damjanov et al. 2011; Newman et al. 2012;
Cimatti et al. 2012; Poggianti et al. 2013): Reff =
Reff(z,M∗(z)). We assume that ETGs grow while stay-
ing on the observed M∗−Reff relation at all times. Then
we can write

d logReff

dz
=

∂ logReff

∂z
+

∂ logReff

∂ logM∗

d logM∗
dz

(12)

and use the values measured by Newman et al. (2012),
∂ logReff/∂z = −0.26 ± 0.02 and ∂ logReff/∂logM∗ =
0.59± 0.07.
Plugging these values into Equation 7 we find that

dγ′

dz
= (−0.31± 0.10) + (0.40± 0.15)(−0.15± 0.15)

+(−0.76± 0.15)[(−0.26± 0.02)

+(−0.15± 0.15)(0.59± 0.07)] = −0.10± 0.12
(13)

Note that dγ′/dz has little dependence on the mass
growth rate d logM∗/dz, which is the most poorly known
quantity in this model. To be more quantitative we plot
in Figure 11 the total derivative dγ′/dz as a function
of d logM∗/dz, and show that for any plausible value,

Fig. 11.—Mean intrinsic change of the density slope with redshift
of a massive ETG, as a function of its mass growth rate.

spanning over an order of magnitude, the answer is un-
changed. Different assumptions on the evolution of the
size-mass relation do not change significantly our result.
For instance, Damjanov et al. (2011) find a more rapid
evolution of Reff than Newman et al. (2012), leading to
dγ′/dz = 0.06 ± 0.15, consistent with no change of the
total mass density profile with time.
Thus, the key result is that, when considering all the

terms of Equation 7, we find that, on average, individ-
ual ETGs grow at approximately constant density slope.
The observed redshift dependence of γ′ at fixed mass and
size can then be understood as the result of the evolution
of the size-mass relation and by the dependency of γ′ on
the stellar mass density. Qualitatively, in this picture an
individual galaxy grows in stellar mass and size so as to
decrease its central stellar mass density. During this pro-
cess, the slope of its total mass density profile does not
vary significantly. However the other galaxies that now
find themselves to have the original stellar mass and ef-
fective radius of this galaxy had originally a steeper mass
density profile, thus giving rise to the observed trend in
∂γ′/∂z.
This is illustrated in Figure 12, where we show a pos-

sible scenario consistent with the observations. The evo-
lutionary tracks of two representative galaxies between
z = 1 and z = 0 are shown as solid black arrows, in
the multi-dimensional parameter space of stellar mass,
effective radius, effective density, and slope of the mass
density profile γ′. The two galaxies are chosen so that
one has at z = 1 the same mass and effective radius that
the other has at z = 0. Mass and size are evolved fol-
lowing Equation 11 and Equation 12. We then assign
γ′ at z = 0 based on the observed correlation with size
and stellar mass (effectively with effective stellar mass
density, since β ≈ −2ξ) and assume it does not evolve
for an individual galaxy. The apparent evolution of γ′ at
fixed M∗ and Reff is consistent with the measured value
∂γ′/∂z = −0.29 ± 0.10, and is dictated by a difference
in the initial stellar density of their progenitors, being
larger for the more massive object.
In the context of simple one-parameter stellar profiles

(e.g. de Vaucouleurs), this difference in γ′ at fixed mass
and size for galaxies at different redshift must be ascribed
to corresponding differences in the underlying dark mat-

High-z sample is not the progenitor of low-z one! 
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1987; Dressler et al. 1987). Two parameters are then
probably sufficient to capture the variation of γ′ across
the population of ETGs. For our analysis we focus on
stellar mass and effective radius (this includes also de-
pendencies on stellar mass density, which is believed
to be an important parameter driving γ′, as discussed
above). Our objective is then to measure the trends
in γ′ across the three-dimensional space defined by
(z,M∗, Reff). This is done with a simple but rigorous
Bayesian inference method. We assume that the values
of the slope γ′ of our lenses are drawn from a Gaussian
distribution with mean given by

⟨γ′⟩ = γ′
0 +α(z− 0.3) + β(logM∗ − 11.5) + ξ log (Reff/5)

(2)
and dispersion σγ′ . The stellar mass is in solar units
and the effective radius in kpc. We also assume that
individual stellar masses M∗,i are drawn from a parent
distribution that we approximate as a Gaussian:

Pr(M∗,i) =
1

σM∗

√
2π

exp

⎡

⎣−

(
logM∗,i − µ(Samp)

M∗
(zi)

)

2σ2(Samp)
M∗

⎤

⎦.

(3)
To account for selection effects, we allow for a different
mean stellar mass and dispersion for lenses of different
surveys. We also let the mean stellar mass be a function
of redshift. This choice reflects the clear trend of stellar
mass with redshift seen in Figure 4 for both the SLACS
and the SL2S samples, which in turn is determined by
SLACS and SL2S both being magnitude-limited samples.
The parameter describing the mean stellar mass is then

µ(SLACS)
M∗

= ζ(SLACS)(zi − 0.2) + logM∗,0
(SLACS) (4)

for SLACS galaxies and

µ(SL2S)
M∗

= ζ(SL2S)(zi − 0.5) + logM∗,0
(SL2S) (5)

for SL2S and LSD galaxies. We assume flat priors on all
the model parameters and fit for them with a Markov
chain Monte Carlo following Kelly (2007). The stel-
lar masses considered in this model are those measured
in Paper III assuming a Salpeter IMF. The full poste-
rior probability distribution function is shown in Fig-
ure 10 and the median, 16th and 84th percentile of the
probability distribution for the individual parameters,
obtained by marginalizing over the remaining param-
eters, is given in Table 4. The fit is done first with
SL2S galaxies only and then repeated by adding SLACS
and LSD lenses. For six lenses of the SLACS sample
Auger et al. (2010a) warn that their velocity dispersions
might be significantly incorrect, and we conservatively
exclude them from our fit. These are SSDSJ0029−0055,
SDSSJ0737+3216, SDSSJ0819+4534, SDSSJ0935−0003,
SDSSJ1213+6708 and SDSSJ1614+4522.
By using only the 25 SL2S lenses for which γ′ mea-

surements are possible, we are able to detect a trend
of ⟨γ′⟩ with Reff at the 3-sigma level and a dependence
on M∗ at the 1-sigma level: at fixed z and M∗, galax-
ies with a smaller effective radius have a steeper density
profile. Similarly, at fixed Reff , galaxies with a larger
stellar mass have a marginally larger γ′. If we add 53
lenses from SLACS and 4 lenses from the LSD survey,
the trends with M∗ and Reff are confirmed at a higher

significance, and we detect a dependence of ⟨γ′⟩ on red-
shift at the 3-sigma level. Lower redshift objects appear
to have a steeper slope than higher redshift counterparts
at fixed mass and size. Incidentally, the median value
of ξ, the parameter describing the linear dependence of
⟨γ′⟩ on logReff , is nearly −2 times β, the parameter de-
scribing the dependence on logM∗. This suggests that
⟨γ′⟩ grows roughly as β log (M∗/R2

eff), which is equiva-
lent to the stellar mass density. It appears then that
the dependence of γ′ on the structure of ETGs can be
well summarized with a dependence on stellar mass den-
sity, leaving little dependence on M∗ or Reff individually.
This confirms and extends the trend with surface mass
density seen by Auger et al. (2010a) and Dutton & Treu
(2013).
We then repeated the fit allowing only for a dependence

of ⟨γ′⟩ on redshift and stellar mass density:

⟨γ′⟩ = γ0 + α(z − 0.3) + η(logΣ∗ − 9.0). (6)

This model has one less free parameter with respect to
Equation 2. Our inference on the parameter describing
the dependence on Σ∗ is η = 0.38 ± 0.07, and the scat-
ter in γ′ is σγ′ = 0.12 ± 0.02, the same value measured
for the more general model of Equation 2. This is again
suggesting that the dependence of γ′ on the stellar mass
density might be of a more fundamental nature than de-
pendences on mass and size separately.

7. DISCUSSION

The main result of the previous section is that the en-
semble average total mass density slope of galaxies of a
fixed stellar mass increases with cosmic time (i.e. de-
creases with redshift). This trend with redshift is de-
tected at the 3−σ confidence level and is in good agree-
ment with previous results from Ruff et al. (2011) and
Bolton et al. (2012).
Before discussing the physical interpretation of this re-

sult, however, it is important to emphasize that what we
are measuring is how the population mean density slope
changes in the (z,M∗, Reff) space within the population
of early-type galaxies, and not how γ′ changes along the
lifetime of an individual galaxy. In order to infer the lat-
ter quantity we need to evaluate the variation of γ′ along
the evolutionary track of the galaxy as this moves in the
(z,M∗, Reff) space. This requires to know how both mass
and size of the galaxy change with time, since the slope
depends on these parameters. More formally,

dγ′(z, logM∗, logReff)

dz
=

=
∂γ′

∂z
+

∂γ′

∂ logM∗

d logM∗
dz

+
∂γ′

∂ logReff

d logReff

dz
.

(7)

In a parallel with fluid mechanics, our description of the
population of galaxies of Section 5 is Eulerian, while
Equation 7 is a Lagrangian specification of the change in
time of the mean slope of an individual galaxy, providing
a more straightforward way to physically understand the
evolution of ETGs.
With all these terms entering Equation 7, it is no longer

clear if the density slope is indeed getting steeper with
time for individual objects. In particular, we have ob-
served that γ′ depends significantly on stellar mass den-
sity (and thus effective radius). It is then crucial to con-
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sider all the terms of the equation before reaching a con-
clusion. Fortunately this can be done by combining our
measurements with results from the literature.
In the context of our model specified in Equation 2, the

partial derivatives introduced above can be identified and
evaluated as follows:

∂γ′

∂z
= α = −0.31± 0.10, (8)

∂γ′

∂ logM∗
= β = 0.40± 0.16, (9)

∂γ′

∂ logReff
= ξ = −0.76± 0.15. (10)

Note that we are not considering the effects of scatter:
we are assuming that the change in γ′ is the same as
that of a galaxy that evolves while staying at the mean
γ′ as it moves through the (z,M∗, Reff) space. By doing
so, the evolution in the slope that we derive from Equa-
tion 7 will be representative of the mean change in γ′

over the population, while individual objects can have
different evolutionary tracks, within the limits allowed
by our constraints on σγ′ .
The remaining quantities to be estimated are the rate

of mass and size growth. In the hierarchical merging
picture ETGs are expected to grow in stellar mass with
time, therefore dM∗/dz < 0. Observationally, we know
massive early-type galaxies grow at most by a factor of
two in stellar mass since z = 1 (see, e.g., Lin et al. 2013,
and references therein). Thus we can conservatively take
the mean between zero and 2, even though we will show
below that our conclusion are virtually insensitive to this
choice:

d logM∗
dz

= −0.15± 0.15. (11)

The effective radius grows as a result of the
growth in mass, but is itself an evolving quantity at
fixed M∗ (Damjanov et al. 2011; Newman et al. 2012;
Cimatti et al. 2012; Poggianti et al. 2013): Reff =
Reff(z,M∗(z)). We assume that ETGs grow while stay-
ing on the observed M∗−Reff relation at all times. Then
we can write

d logReff

dz
=

∂ logReff

∂z
+

∂ logReff

∂ logM∗

d logM∗
dz

(12)

and use the values measured by Newman et al. (2012),
∂ logReff/∂z = −0.26 ± 0.02 and ∂ logReff/∂logM∗ =
0.59± 0.07.
Plugging these values into Equation 7 we find that

dγ′

dz
= (−0.31± 0.10) + (0.40± 0.15)(−0.15± 0.15)

+(−0.76± 0.15)[(−0.26± 0.02)

+(−0.15± 0.15)(0.59± 0.07)] = −0.10± 0.12
(13)

Note that dγ′/dz has little dependence on the mass
growth rate d logM∗/dz, which is the most poorly known
quantity in this model. To be more quantitative we plot
in Figure 11 the total derivative dγ′/dz as a function
of d logM∗/dz, and show that for any plausible value,

Fig. 11.—Mean intrinsic change of the density slope with redshift
of a massive ETG, as a function of its mass growth rate.

spanning over an order of magnitude, the answer is un-
changed. Different assumptions on the evolution of the
size-mass relation do not change significantly our result.
For instance, Damjanov et al. (2011) find a more rapid
evolution of Reff than Newman et al. (2012), leading to
dγ′/dz = 0.06 ± 0.15, consistent with no change of the
total mass density profile with time.
Thus, the key result is that, when considering all the

terms of Equation 7, we find that, on average, individ-
ual ETGs grow at approximately constant density slope.
The observed redshift dependence of γ′ at fixed mass and
size can then be understood as the result of the evolution
of the size-mass relation and by the dependency of γ′ on
the stellar mass density. Qualitatively, in this picture an
individual galaxy grows in stellar mass and size so as to
decrease its central stellar mass density. During this pro-
cess, the slope of its total mass density profile does not
vary significantly. However the other galaxies that now
find themselves to have the original stellar mass and ef-
fective radius of this galaxy had originally a steeper mass
density profile, thus giving rise to the observed trend in
∂γ′/∂z.
This is illustrated in Figure 12, where we show a pos-

sible scenario consistent with the observations. The evo-
lutionary tracks of two representative galaxies between
z = 1 and z = 0 are shown as solid black arrows, in
the multi-dimensional parameter space of stellar mass,
effective radius, effective density, and slope of the mass
density profile γ′. The two galaxies are chosen so that
one has at z = 1 the same mass and effective radius that
the other has at z = 0. Mass and size are evolved fol-
lowing Equation 11 and Equation 12. We then assign
γ′ at z = 0 based on the observed correlation with size
and stellar mass (effectively with effective stellar mass
density, since β ≈ −2ξ) and assume it does not evolve
for an individual galaxy. The apparent evolution of γ′ at
fixed M∗ and Reff is consistent with the measured value
∂γ′/∂z = −0.29 ± 0.10, and is dictated by a difference
in the initial stellar density of their progenitors, being
larger for the more massive object.
In the context of simple one-parameter stellar profiles

(e.g. de Vaucouleurs), this difference in γ′ at fixed mass
and size for galaxies at different redshift must be ascribed
to corresponding differences in the underlying dark mat-
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sider all the terms of the equation before reaching a con-
clusion. Fortunately this can be done by combining our
measurements with results from the literature.
In the context of our model specified in Equation 2, the

partial derivatives introduced above can be identified and
evaluated as follows:

∂γ′

∂z
= α = −0.31± 0.10, (8)

∂γ′

∂ logM∗
= β = 0.40± 0.16, (9)

∂γ′

∂ logReff
= ξ = −0.76± 0.15. (10)

Note that we are not considering the effects of scatter:
we are assuming that the change in γ′ is the same as
that of a galaxy that evolves while staying at the mean
γ′ as it moves through the (z,M∗, Reff) space. By doing
so, the evolution in the slope that we derive from Equa-
tion 7 will be representative of the mean change in γ′

over the population, while individual objects can have
different evolutionary tracks, within the limits allowed
by our constraints on σγ′ .
The remaining quantities to be estimated are the rate

of mass and size growth. In the hierarchical merging
picture ETGs are expected to grow in stellar mass with
time, therefore dM∗/dz < 0. Observationally, we know
massive early-type galaxies grow at most by a factor of
two in stellar mass since z = 1 (see, e.g., Lin et al. 2013,
and references therein). Thus we can conservatively take
the mean between zero and 2, even though we will show
below that our conclusion are virtually insensitive to this
choice:

d logM∗
dz

= −0.15± 0.15. (11)

The effective radius grows as a result of the
growth in mass, but is itself an evolving quantity at
fixed M∗ (Damjanov et al. 2011; Newman et al. 2012;
Cimatti et al. 2012; Poggianti et al. 2013): Reff =
Reff(z,M∗(z)). We assume that ETGs grow while stay-
ing on the observed M∗−Reff relation at all times. Then
we can write

d logReff

dz
=

∂ logReff

∂z
+

∂ logReff

∂ logM∗

d logM∗
dz

(12)

and use the values measured by Newman et al. (2012),
∂ logReff/∂z = −0.26 ± 0.02 and ∂ logReff/∂logM∗ =
0.59± 0.07.
Plugging these values into Equation 7 we find that

dγ′

dz
= (−0.31± 0.10) + (0.40± 0.15)(−0.15± 0.15)

+(−0.76± 0.15)[(−0.26± 0.02)

+(−0.15± 0.15)(0.59± 0.07)] = −0.10± 0.12
(13)

Note that dγ′/dz has little dependence on the mass
growth rate d logM∗/dz, which is the most poorly known
quantity in this model. To be more quantitative we plot
in Figure 11 the total derivative dγ′/dz as a function
of d logM∗/dz, and show that for any plausible value,
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spanning over an order of magnitude, the answer is un-
changed. Different assumptions on the evolution of the
size-mass relation do not change significantly our result.
For instance, Damjanov et al. (2011) find a more rapid
evolution of Reff than Newman et al. (2012), leading to
dγ′/dz = 0.06 ± 0.15, consistent with no change of the
total mass density profile with time.
Thus, the key result is that, when considering all the

terms of Equation 7, we find that, on average, individ-
ual ETGs grow at approximately constant density slope.
The observed redshift dependence of γ′ at fixed mass and
size can then be understood as the result of the evolution
of the size-mass relation and by the dependency of γ′ on
the stellar mass density. Qualitatively, in this picture an
individual galaxy grows in stellar mass and size so as to
decrease its central stellar mass density. During this pro-
cess, the slope of its total mass density profile does not
vary significantly. However the other galaxies that now
find themselves to have the original stellar mass and ef-
fective radius of this galaxy had originally a steeper mass
density profile, thus giving rise to the observed trend in
∂γ′/∂z.
This is illustrated in Figure 12, where we show a pos-

sible scenario consistent with the observations. The evo-
lutionary tracks of two representative galaxies between
z = 1 and z = 0 are shown as solid black arrows, in
the multi-dimensional parameter space of stellar mass,
effective radius, effective density, and slope of the mass
density profile γ′. The two galaxies are chosen so that
one has at z = 1 the same mass and effective radius that
the other has at z = 0. Mass and size are evolved fol-
lowing Equation 11 and Equation 12. We then assign
γ′ at z = 0 based on the observed correlation with size
and stellar mass (effectively with effective stellar mass
density, since β ≈ −2ξ) and assume it does not evolve
for an individual galaxy. The apparent evolution of γ′ at
fixed M∗ and Reff is consistent with the measured value
∂γ′/∂z = −0.29 ± 0.10, and is dictated by a difference
in the initial stellar density of their progenitors, being
larger for the more massive object.
In the context of simple one-parameter stellar profiles

(e.g. de Vaucouleurs), this difference in γ′ at fixed mass
and size for galaxies at different redshift must be ascribed
to corresponding differences in the underlying dark mat-
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Figure 3. The variations of the mass-weighted total den-
sity slopes γ′

tot with respect to the dark matter halo masses
Mhalo. Results are derived from HAGN (black points) and
HnoAGN (white points) galaxies with V/σ < 1 and a mass
of log(M∗) > 11 at z = 0.3. We also plot observational data
from SLACS (red colors) and Newman et al. (2013, 2015)
(green colors) as well as predictions from the Eagle simula-
tion. Error bars indicate the dispersions. When AGN feed-
back is included, theoretical predictions are in nice agreement
with observations. On the contrary, in the absence of AGN
feedback, derived γ′

tot values are totally inconsistent with
observational expectations.

tal density profiles at the scale of the effective radius. A
similar conclusion was obtained in Peirani et al. (2017),
when studying the inner DM and stellar profiles (r ≤ 5
kpc) which is mainly explained by the fact that AGN
feedback has a more important impact in the most mas-
sive objects. Moreover, values of γ′

tot are in nice agree-
ment with observational ones. On the contrary, in the
absence of AGN feedback, γ′

tot values are much too high
especially for massive objects. Note that we didn’t use
our matching scheme here when selecting the HnoAGN

galaxies in order to consistently compare with the ob-
servational mass range. However, we have checked that
the matching scheme would select HnoAGN galaxies with
higher masses and higher effective radius but will not re-
ally change the evolutions of γ′

tot previously derived. It
is also encouraging to notice that our simulated values
for HAGN haloes presented in Fig. 3 are in nice agree-
ment with those of Schaller et al. (2015) using the Eagle
simulation (Schaye et al. 2015).

In view of all of these results, AGN feedback seems
to be required to explain the observational trends.

3.3 Dependencies of γ′
tot with γ′

dm and γ′
∗

In this section, we investigate the variations of γ′
tot with

either the stellar slope γ′
∗ or the dark matter slope

γ′
dm for galaxies with a mass greater than 1011M⊙ and
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Figure 4. The variations of the mass-weighted total den-
sity slopes γ′

tot with respect to the stellar masses M∗ at
z = 0.3. Results are derived from HAGN (black points) and
HnoAGN (white points) galaxies with V/σ < 1 and a mass of
log(M∗) > 11. We also plot observational data from SLACS
(red colors), SL2S (pink colors) and Newman et al. (2013)
(green colors). Error bars indicate the dispersions. AGN feed-
back permits to get a pretty good agreement with observa-
tions.

V/σ < 1 at z = 0.3. Results from Horizon-AGN and
Horizon-noAGN simulations are presented in Fig. 5.
First, when AGN feedback is included, one can notice
that γ′

tot and γ′
dm are strongly correlated. Regarding the

dependency of γ′
tot and γ′

∗, the dispersion is higher and
the correlation is less clear but the important point here
is that AGN feedback tends to limit the total slope to
values close to 2 for the less massive galaxies while it re-
duces γ′

tot in the more massive ones, which is consistent
with the observations. On the contrary, in the absence
of AGN feedback, we found again the opposite trends:
γ′
tot and γ′

∗ are this time strongly correlated and due
to stronger adiabatic contraction, γ′

dm reach values too
high in more massive objects (see Peirani et al. 2017).

Another way to look into those variations and po-
tential strong correlations between the three different
density slopes is to consider the two dimensional plots
of Fig. 6 showing the variations of γ′

∗ and γ′
dm with

a color code representing the values of γ′
tot for galaxies

with a mass greater than 1011M⊙ and V/σ < 1 at z = 0.
Note that this time we use the matching algorithm to
select the HnoAGN galaxies which has the advantage,
beside comparing the same objects between the simu-
lations, to us to consider a higher number of HnoAGN

galaxies. Indeed, most of the massive HnoAGN galaxies
are disk-dominated and do not then satisfied V/σ < 1
(see Dubois et al. 2016). However, we have checked that
no significant differences are obtained if HnoAGN galax-
ies were selected using the same mass and V/σ criteria.
Thus, the plots presented in Fig. 6 give the possible
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Excellent agreement with cosmological Hydro simulations 
(eg. Horizon-AGN, Peirani, Dubois++18) 



Evidence for non-universal IMF 
Treu++10,  
Auger++10, 
Sonnenfeld++15 

•  α~1 :  In ETGs, IMF is more Salpeter-like

•  η~0.4 : More massive galaxies are more massive!  
 
•  Local dynamical studies (eg SAURON/ATLAS-3D) in agreement (Cappellari++) 
 
•  One cannot have both universal IMF and universal NFW DM profile 

•  Degeneracy with DM response to baryons cooling… 
 
•  But faint spectral lines (Na, TiO, CaI) support the result (Spinielli++, Conroy++) 
 
•  Moreover:  Evidences for radial gradients of M*/L  (and hence IMF normalisation:  

Martin-Navarro, La Barbera++, van Dokkum++, Sarzi++  ) 
 



Sonnenfeld++18 

Complex relation between halo and stellar masses 
 
Fitting SL, dynamics and WL:  
     45 SLACS SLs,  1400 HSC  LRGs for WL) 

Addition of weak GG-lensing 

Vanilla: constant IMF 
           +NFW halo 

+ Dark Matter 
contraction/expansion 

+IMF gradients! 



Current efforts 

Sonnenfeld++17:   330 lenses over 442 deg2   (0.75 deg-2) 
    

DES, year1 , Diehl++17:  
 
370 lenses over 2000 deg2   (0.18 deg-2) 
    

Petrillo++18:   56 solid lenses over 225 deg2  (0.25 deg-2) 
 
 
(when completed + CNNs pushed… 2400/1000=2.4 deg-2) 
 
    



Methodological improvements 

Parametric  bayesian forward modeling 
 
Machine learning  (CNNs...) 



 
Simultaneous fit in all  u g (r) i z  bands of a (red) 

deflector  and a (blue) ring. 
 
Optimization over a many-parameter space  
    (with strong priors on color of fg/bg). 
       Rein, q, PA,  
       q_d, PA_d, size, Fluxd1, Fluxd2…  
       xs, ys, q_s, PA_s, size, Fluxs1, Fluxs2… 
 
Sampling time a few min.CPU, still being improved  
 
 
PSFEx:  multiband PSF model over a given  FOV 
Sextractor run (in model-fitting mode!) used to start the 
lens modeling and isolate nearby objects.  
 
 

Forward modelling of all massive ETGs 



13/05/13 Euclid consortium meeting, Leiden 16 

http://metcalf1.bo.astro.it/blf-portal/gg_challenge.html 

Machine learning techniques 



13/05/13 Euclid consortium meeting, Leiden 17 

http://metcalf1.bo.astro.it/blf-portal/gg_challenge.html 

Machine learning techniques 

Simulation of  Euclid-VIS  and ground-based KiDS-like strong lenses  
Training: get 104 cutout images with known truth (lens / not lens) 

Testing: classify 105 cutout images within 48 hours (avoid visual classif) 

Closed February 5th  2017! 
Future steps for SL Challenge: 
    New issue to be completed by Fall 2018 with VIS +  3-band NIR channels (color!!) 
    Aiming at more complexity in the deflectors geometry… 

Metcalf++18 



 
AUROC 
 

TPR0 

TPR10 



Completeness 

Ground-based yields higher completeness  due to color information 



Completeness | high purity 

Small chances requiring high purity…. Crucial for rare events  (τ~10-3)  



Einstein radius 
   (arcsec) 

Lensed Flux (AU) Magnification 

Results depend on  

Several recent papers: (Bom++16, Avestruz++17, Jacobs++17, Petrillo++17, 
Schaefer++18, Lanusse++18, Hartley++17 SVM) 
à Heavy training effort. So far, only applied   



Ongoing work for CFIS 



As of July 2018: 
 
CFIS tiles with both u and r : 750 deg2  
 (1800 deg2 some/full r) 
  
Work currently using candide cluster  
as part  of CALET initiative at IAP. 
 
 
Track 1:  Spectro SDSS  (0.05<z<1, σ>150km/s) à 130 deg-2 : expect ~700 SL   
 
               Forward modeling :  ~3000 CPU.hours / filter .  Ongoing!!!! 

•  Scaled to full CFIS 4500 deg2 à17,000 CPU.hours.  Tractable (~4000 SL) 
•  Scaled to 2000 photometric ETGs/deg2  à 300,000  CPU.hours 

 
Track 2:  Train CNNs on dedicated image simulations… Build on effort for Euclid 
 
 
à Organize spectroscopic follow-up of lensed arcs/rings (cherrypick high-z, high-snr) 
à Combine strong & weak GG lensing!! 
 

z 

σ 



Bonus Tracks 



•  41000 foreground SDSS (spectroscopic redshift & velocity dispersion)  

•  Background sources:  CFHTLenS (150deg2), NGVS (100deg2), down to i~24.5, in  
ug(r)iz bands, with 0.65-0.75’’ seeing in lensing band and <1’’ in other bands. 

Adding Weak lensing constraints 



•  41000 foreground SDSS (spectroscopic redshift & velocity dispersion)  

•  Background sources:  CFHTLenS (150deg2), NGVS (100deg2), down to i~24.5, in  
ug(r)iz bands, with 0.65-0.75’’ seeing in lensing band and <1’’ in other bands. 

Adding Weak lensing constraints 



3.1. RECHERCHE DE GALAXIES LENTILLES

3.1.3 Préparation de la mission Euclid

Figure 3.3: Ci-dessus : Lentilles simulées
vues par le satellite Euclid. Les panneaux de
gauche montrent le même objet depuis le sol
(CFHTLS), au milieu la bande VIS d’Euclid
et à droite un composite des bandes YJK de
l’imageur Infrarouge. Ci-contre : Prédictions
pour la mission du nombres de galaxies len-
tilles en termes de rayons d’Einstein, disper-
sion de vitesse des lentilles, de redshift des
déflecteurs et sources, amplification et flux
intrinsèque de la source (extrait du Euclid
Strong lensing White Paper, in prep).

Depuis 2010, je suis membre de la collaboration du satellite européen Euclid au sein duquel
je travaille sur les aspects lentilles, priorité de la mission. En particulier, j’ai été promu co-
responsable du Strong Lensing Science Working Group à partir de 2013. Au sein de ce dernier,
nous nous e↵orçons de construire une châıne de détection automatique de la grande quantité
d’événements strong lensing que recèlera l’imagerie haute résolution du satellite sur 15 000 deg2

du ciel. Le segment sol de la mission a pour charge de construire cet algorithme et l’intégrer à
l’infrastructure de la mission afin d’extraire le maximum de telles lentilles.

Dès 2010, j’ai réalisé des simulations d’images (Fig. 3.3) pour apprécier la qualité attendue
et nous travaillons à optimiser les algorithmes de recherche. La partie droite de Fig. 3.3 montre
également le nombre de lentilles que l’on devrait découvrir et quelques-unes de leurs principales
propriétés. Notamment, jusqu’à des rayons d’Einstein aussi petits que 0.005, l’échantillon devrait
atteindre ⇠ 150 000 objets à la fin de la mission, mais dès le premier mois d’opération, Euclid
trouvera plus de lentilles que toutes celles qui seront connues à ce jour. Nous devrions même être
deux fois plus e�caces que le relevé LSST (56). Un quart de ces lentilles devrait être au-delà
de z

l

= 1, ce qui nous assurera un bras de levier substantiel pour contraindre l’évolution des
régions centrales des galaxies massives.

Mais pour atteindre ces objectifs, il est nécessaire de construire des algorithmes e�caces et
c’est sur ce dernier aspect que le SWG a jusqu’ici principalement porté ses e↵orts. En parti-
culier, la di�culté réside dans le maintien d’un grand degré de pureté dans la recherche car
de nombreuses fausses détections peuvent contaminer l’échantillon (§3.1.2). Pour ma part, j’ai
livré ring finder au CNES dans ce contexte mais ses performances ne sont pas su�santes.
Mon programme de modélisation sl fit pourrait être envisagé pour augmenter la pureté d’un
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