

<section-header>David Valls-Gabaud LERMA - Observatoire de Paris on behalf of the MESSIER collaboration SF2A - Bordeaux 2018 July 6

THE MESSIER SURVEYOR

linear

weakly nonlinear

highly nonlinear

Boylan-Kolchin et al. (2009)

<u>Untested</u>

LCDM predictions

Tension in the CDM paradigm ?

Self-Interacting dark matter

Cold dark matter

Brooks et al. (2014)

Warm dark matter

Discovery rate of Milky Way satellites

K. Bechtol (2015)

Drlica-Wagner et al. (2015)

Current instrumentation is not adequate for LSB science

Flux received by a point source:

 \rightarrow drives telescopes with *large* diameters and *large* focal lengths

Surface brightness received by a extended unresolved source:

$$SB_{\text{extended}} = \epsilon \pi^2$$

 \rightarrow requires fast optics with minimal (f/D) ratio

$$\left(rac{D}{2}
ight)^2 \, t_{exp} \, 10^{-0.4\,m}$$

$$\left(rac{f}{D}
ight)^{-2} t_{exp} \, s_{pix}^2 \, N_{pix} \, 10^{-0.4 \, \mu}$$

The Dragonfly array telescope

Abraham & Van Dokkum (2014)

47 new Milky Way-sized galaxies in the Coma cluster

The unprobed realm of the ultra-low surface brightness universe

 $\mu(V) < 21.5 \text{ mag arcsec}^{-2}$

Mihos et al. (2005)

Limited by systematics

- sky variability
- straylight
- flat field accuracy
- extended PSF wings

Foregrounds

- zodiacal light
- cirrus (local ISM)

Large f/D optics are inefficient for LSB science

Yet, ideal for resolved stellar populations at low SB levels

- Obstruction by secondary mirrors yields very extended and anisotropic complex PSFs
- Requires tailored observational planning, incompatible with main science drivers

Scattering by atmospheric molecules is the major limitation for ground-based detections

No lenses are allowed

(1) internal scattering (2) Cherenkov emission

21. 8

New ultra-diffuse galaxy

Top-level design requirements

FOV	2°
Focal ratio	f /
Central obscuration	nc
Spatial resolution	//
Roughness	< (
Flat field rms	< 0
Distortion	< (
Diameter	50
Survey	all

- $^{\circ} \times 4^{\circ}$ (lifetime of satellite)
- 2 (200x better than HST / Euclid)
- one (minimal PSF wings)
- per pixel (matches ground)
- 0.5 nm (UV to optical)
- .0025% (TDI / drift scan)
- 0.5% (in one direction)
- to I50 cm (set by platform)
- sky (unique)

Requirements for filters

Broad-band UV/optical filters: characterise resolved/unresolved stellar populations Narrow 200 nm filter: Ly α intensity mapping of cosmic web at z=0.64 Δz =0.03

6 x 2 independent controllers in drift-scan mode Highly efficient: no moving parts, passive cooling

(Curved) focal plane configuration

- QE of each CCD optimised for each filter (TQ>85%)

2°

Expected performances - Optical bands Simulated MESSIER images of a real galaxy (M31) seen at 150 Mpc

I Msec I kpc × I kpc

10 Msec I kpc × I kpc

Expected performances - II UV bands

Sun-Synchronous Orbit

- 900 km, 98° inclination, LTAN 6h Full-sky survey in 6 months
- Pointing \perp Sun-Earth direction (no Earthshine) Inertial great-circle drift scan centred at the Sun (similar to COBE, WISE, PROBA-V)

Complete sky coverage every 6 months

Includes Moon avoidance angle (35 degrees) and South Atlantic Anomaly

Time sampling:

1 UV-optical measure/pixel every 90 minutes for 2 days at $\beta = 0$ 1 UV-optical measure/pixel every 90 minutes at $|\beta| \ge 80$ at all times

CSC Collateral Science Cases (free by-products)

- Solar System What is the extent of mass loss in giant stars ? Stellar physics
- Comet tails, interplanetary and cometary dust grains
- Debris discs
- Nature of orphan SN and GRB?
- Time-domain stellar astronomy: simultaneous multi-wavelength variability disruption events, GW UV counterparts Legacy Ultimate multi-band photometric survey of point sources Interstellar medium Properties of interstellar dust grains

- Extragalactic
- What is the true luminosity function of galaxies ? What is the molecular content of galaxies in the low-z universe ? What is the role of intracluster light and the accretion history in clusters ?
- The fluctuations of the optical / UV cosmological background radiation G Calibration of the cosmological distance ladder with Surface Brightness fluctuations Baryonic acoustic oscillations with 3 10⁶ galaxies in a thin shell at z=0.65

CSC 7 Mass loss episodes from massive stars

Betelgeuse

 \rightarrow enrichment of the interstellar medium in metals \rightarrow chemical evolution of galaxies

Decin et al. (2012)

CSC 9 Variability and transients from the UV to the optical Orphan SN and GRB, Tidal disruption events, GW events

CSC 12 Time-domain astronomy Variability and transients from the UV to the optical

CSC 16 UV counterparts of gravitational wave events

Ridden-Harper *et al*. (2017)

Photometric performance of MESSIER for point sources

Table 16: Properties of the MESSIER AB photometric system						
Filter	$\lambda_{ m eff}$ [nm]	ZP (Flux) [10 ⁻⁸ erg s ⁻	${ m ZP}~({ m photons})^1~{ m cm}^{-2}~{ m \AA}^{-1}$]	ZP [Jy]		
IB 200	$194 \cdot 5282$	2.83678	2.75917	3631		
NB 200	$199 \cdot 2507$	2.73673	2.72648	3631		
MF 310	$302 \cdot 0625$	1.17759	1.14743	3631		
MF 490	$476 \cdot 0350$	4.73430	0.459937	3631		
MF 700	690·2802	0.226857	0.223707	3631		
MF 890	$883 \cdot 8244$	0.138868	0.137904	3631		

End of mission (5 years) sensitivity: 27.5 AB (3σ) — limited by confusion (1 arcsec pixels) — strong dependence with ecliptic latitude

Isochrones in the MESSIER photometric system

Extreme sensitivity to metallicity with the UV filters

Extreme sensitivity to metallicity in filters (much) bluer than U

Bond (1999)

Photon Monte Carlo for the new optical design with curved CCDs

Allows for the detailed modelling of *all* the physical processes involved

End-to-end simulation (from the atmosphere to CTE effects)

Quantifies the variability of the wings of the PSF across FOV

Lombardo et al. (2018)

The MESSIER pathfinder (2018)

- Demonstration of advanced technologies :

 - curved focal plane
 - drift scanning with curved CCDs
 - characterisation the PSF on large scales
 - increase TRL level to 6

Demonstration of LSB science cases (with 2 filters)

MOU signed with IAC

— fast optics with off-axis reflective Schmidt design (D>36cm)

Installation at Teide Observatory (dome, optical fibre ethernet, power)

MESSIER The ultimate survey of the ultra-low surface brightness universe

Unique international collaboration built upon strong heritage

A fully unexplored niche remaining in observational parameter space — unprecedented discovery scope

Unique scientific returns in cosmology, galaxy evolution, stellar physics

Legacy value: reference catalogue for multi-band optical/UV photometry

Further partners welcome !

