Characterization of exoplanetary atmospheres with VLT-SPHERE

Benjamin Charnay (LESIA, Observatoire de Paris)

with the participation of:

M. Bonnefoy, A. Boccaletti, G. Chauvin, S. Lacour, M. Nowak & the SPHERE Consortium

A portrait of the directly imaged planets

Imaged planets are massive and far from their host star

Giant planet formation

Planet agglomerates from dust and

attracts gas

envelope

Atmospheres as probes of planetary formation

Atmospheres as probes of planetary formation

Atmospheric metallicity

Thorngren et al. (2016)

Luminosity and radius Atmospheric composition (metallicity, C/O,...)

Effect of snowlines on C/O

Öberg al. (2011)

Formation mechanism & interior

Comparison brown dwarfs vs imaged giant planets

Imaged planets are young ⇒ low surface gravity

Alternative explanation:

Thermochemical instabilities producing reddening for L dwarfs *Tremblin et al. (2016, 2017)*

Current facilities for direct imaging

European Consortium, VLT

- IR Camera
- IR spectrograph
- Visible highprecision polarimeter

US, Gemini South

IR spectrograph

Japan, Subaru

- IR Camera
- IR spectrograph

*US, Chile*Visible Camera

1st light: May 4th, 2014 Operations: Feb. 2015

- Contrast (planet/star) ≤ 10⁻⁵
- Combine Ex-AO and advanced coronography
- GTO: 260 nights over 5 years
- SHINE Program (200 nights): survey for exoplanets of 400-600 young stars (< 800 Myrs, R mag < 11.5)

Beuzit et al. (2008, 2019)

	IFS	IRDIS	ZIMPOL
FOV	1.73" x 1.73"	11" x 11"	3.5"x3.5"
SPECTRAL RANGE	0.95- 1.65 μm: YJH	0.95-2.32 μm: YJHK	500 - 900 nm
SPECTRAL CHANNELS	39	2	2
POLARIMET RY	X	4	√

Harvest of disks

2 new planets Characterization of several YGP & BD

The HR8799 system

- Additionnal reddening is needed for K band

51 Eri b

51 Eri b:

Age \sim 20 Myr Distance : 14 au Masse \sim 2 M_{Jup} T_{eff} \sim 600-750 K

SPHERE: R~30/50 IFS spectra up to 1.64 μm + H and K band photometry

Photometric and spectral Fitting:

- T-type object (CH₄-dominated)
- Additionnal reddening by cloud needed

51 Eri b

51 Eri b:

Age \sim 20 Myr Distance : 14 au Masse \sim 2 M_{Jup} T_{eff} \sim 600-750 K

Photometric and spectral Fitting:

- T-type object (CH₄-dominated)
- Additionnal reddening by sulfide clouds or transitioning LT object at low gravity

51 Eri b

51 Eri b:

Age \sim 20 Myr Distance : 14 au Masse \sim 2 M_{Jup} T_{eff} \sim 600-750 K

Thermal evolution:

Compatible with a "hot-start » (2 M_{jup}) and a "cold-start" (>2 M_{jup})

⇒ need astrometric mass estimations (Gaia)

HIP65426 b

Chauvin et al. (2017)

HIP65426 b:

Age = 14 ± 4 Myr Distance ~ 100 au Masse ~ 6-12 M_{Jup} T_{eff} ~ 1600 K

Spectral fitting:

- Mid-L spectral type
 (intermediate between β Pic b & HR8799bcde)
- Reddening by thick cloud

PDS 70 b protoplanet

Star:

- 0.7 M⊚
- $5.4 \pm 1 \,\mathrm{Myr}$
- $113 \pm 0.5 \, pc$

Disk:

- 65 au gap
- gas and dust (transition disk)

Candidate:

- Co-moving / 4 years
- 5-10 MJup
- 22 au orbit
- red colors

PDS 70 b protoplanet

PDS 70 b:

 $\overline{\text{Age} \sim 5 \text{ Myr}}$

Distance: 22 au

 $T_{\rm eff} \sim 1050 \text{-} 1600 \text{ K}$

Gravity: $log(g) \le 3.5$

Radius ~ 1.4 -3.7 R_{Jup}

Models with clouds & very low gravity

Large radius ⇒ physical ?

(accretion, absorption/emission from circumplanetary disk?)

PDS 70 b protoplanet

Wagner et al. (2018)

Hα luminosity
$$\Rightarrow$$
 Accretion of hydrogen $(\dot{M} = 10^{-8\pm1} M_{Jup} yr^{-1})$

Atmospheric characterization with GRAVITY/VLTI

eso1905 - Science Release

GRAVITY instrument breaks new ground in exoplanet imaging

Cutting-edge VLTI instrument reveals details of a storm-wracked exoplanet using optical interferometry

27 March 2019

GRAVITY Collaboration, Lacour et al. (2019)

Atmospheric characterization with GRAVITY/VLTI HR8799 e

eso1905 - Science Release

GRAVITY instrument breaks new ground in exoplanet imaging

Cutting-edge VLTI instrument reveals details of a storm-wracked exoplanet using optical interferometry

27 March 2019

T_{eff}~1150 K with thick clouds CO dominated ⇒ chemical disequilibrium

Atmospheric characterization with GRAVITY/VLTI

β Pictoris b

 \rightarrow

Access to C/O in the K band (substellar value)

Complementarity with SPHERE & GPI
Preparation for futures observations (JWST, ELTs)

Futur improvements: SPHERE+

- ➤ Decreasing inner working angle: XAO (DM) 1 kHz \Rightarrow 3kHz
- ➤ Looking at fainter stars (ex Taurus):
 Wavefront Sensing : Pyramid in the IR
 ⇒ gain ~2 mag (G, M stars)
- Medium Resolution:
 new spectrograph SPHERE
 (for detection + characterization)
- ➤ **High Resolution:** characterization by coupling with CRIRES+ (Project HiRISE, PI: A. Vigan)

Take-home messages

- > 5 years since first light from SPHERE (>80 refereered publications on young giant planets, disks and solar system bodies)
- ➤ 2 new exoplanets, including PDS 70 b, a unique case to test models of planetary formation and planet-disk interactions
- With other high-constrast instruments, catalogue of young giant planets
- ➤ Young giant exoplanets appear more cloudy than field brown dwarfs (same issue for transiting exoplanets)
- ➤ To measure molecular abundances in cloudy atmospheres, we need:
 - 1) longer wavelength (JWST, ARIEL)
 - 2) medium/high resolution (GRAVITY, ELTs, SPHERE+)

