GRAVITY: first results on Sgr A* (thanks to PNHE & PNGRAM!) Semaine de l'astrophysique française 2019 Nice **Guy Perrin** Thursday 16 May 2019 ### The Galactic Center 2-disk central cluster 90 massive OB and Wolf-Rayet stars (0.5 pc/12.5") S star cluster 50 massive main sequence stars (0.5-20 mpc/12-400 mas) (Balick & Brown 1974, Becklin et al. 1982, Roberts, Yusef-Zadeh & Goss 1992, Eckart et al. 1995, Paumard et al. 2004, 2006) # AO+radial velocities Accurate mass estimate for Sgr A* #### 3rd Kepler law: $$\frac{a^3}{T^2} = \frac{GM_{SgrA^*}}{4\pi^2}$$ $$M_{Sgr A^*} = 4.31 \pm 0.42 \times 10^6 M_{\odot}$$ $(d = 7.62 \pm 0.32 \text{ kpc})$ Gillessen et al. (2009) ## GRAVITY combines the 4 UTs (8 m) or the 4 ATs (1.80 m) of the VLTI ### What increasing angular resolution in the IR brings S stars Potentially discover new and closer S stars, understand their nature and distribution Probe gravity near a super massive black hole with point masses IR Scale ~ 100 R_s (gain of 50) 1 mas Sgr A* Understand the nature of the flares IR & mm? IR & Probe general relativity in the strong field regime with point masses mm Bring the evidence that Sgr A* is a black hole exploring the horizon IR & scale mm Scale $\sim 1 R_s$ 10 µas (gain of 5000) #### GRAVITY: a distributed instrument on the VLTI In addition to the beam combiner: - 4 infrared adaptive optics (UT) - Metrology probes on the telescopes (UTs and ATs) for high precision astrometry ### Principle of the GRAVITY measurements source for S2 ### Imaging the Galactic Center with GRAVITY ### Interferometric astrometry Distance between interferograms: $$\Delta_{\rm opd} = B \times \Delta \alpha$$ Hence: $$\Delta \alpha = \Delta_{\rm opd} / B$$ An accuracy of 5 nm on $\Delta_{\rm opd}$ with a 100 m baseline yields an accuracy of 10 μ as on $\Delta\alpha$. ### Detection of gravitational redshift with S2 A&A 615, L15 (2018) https://doi.org/10.1051/0004-6361/201833718 © ESO 2018 #### LETTER TO THE EDITOR ### Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole* GRAVITY Collaboration**: R. Abuter⁸, A. Amorim^{6,14}, N. Anugu⁷, M. Bauböck¹, M. Benisty⁵, J. P. Berger^{5,8}, N. Blind¹⁰, H. Bonnet⁸, W. Brandner³, A. Buron¹, C. Collin², F. Chapron², Y. Clénet², V. Coudé du Foresto², P. T. de Zeeuw^{12,1}, C. Deen¹, F. Delplancke-Ströbele⁸, R. Dembet^{8,2}, J. Dexter¹, G. Duvert⁵, A. Eckart^{4,11}, F. Eisenhauer^{1,***}, G. Finger⁸, N. M. Förster Schreiber¹, P. Fédou², P. Garcia^{7,14}, R. Garcia Lopez^{15,3}, F. Gao¹, E. Gendron², R. Genzel^{1,13}, S. Gillessen¹, P. Gordo^{6,14}, M. Habibi¹, X. Haubois⁹, M. Haug⁸, F. Haußmann¹, Th. Henning³, S. Hippler³, M. Horrobin⁴, Z. Hubert^{2,3}, N. Hubin⁸, A. Jimenez Rosales¹, L. Jochum⁸, L. Jocou⁵, A. Kaufer⁹, S. Kellner¹¹, S. Kendrew^{16,3}, P. Kervella², Y. Kok¹, M. Kulas³, S. Lacour², V. Lapeyrère², B. Lazareff⁵, J.-B. Le Bouquin⁵, P. Léna², M. Lippa¹, R. Lenzen³, A. Mérand⁸, E. Müler^{8,3}, U. Neumann³, T. Ott¹, L. Palanca⁹, T. Paumard², L. Pasquini⁸, K. Perraut⁵, G. Perrin², O. Pfuhl¹, P. M. Plewa¹, S. Rabien¹, A. Ramírez⁹, J. Ramos³, C. Rau¹, G. Rodríguez-Coira², R.-R. Rohloff³, G. Rousset², J. Sanchez-Bermudez^{9,3}, S. Scheithauer³, M. Schöller⁸, N. Schuler⁹, J. Spyromilio⁸, O. Straub², C. Straubmeier⁴, E. Sturm¹, L. J. Tacconi¹, K. R. W. Tristram⁹, F. Vincent², S. von Fellenberg¹, I. Wank⁴, I. Waisberg¹, F. Widmann¹, E. Wieprecht¹, M. Wiest⁴, E. Wiezorrek¹, J. Woillez⁸, S. Yazici^{1,4}, D. Ziegler², and G. Zins⁹ (Affiliations can be found after the references) ### Detection of gravitational redshift with S2 Spectroscopy (velocities) Imaging and relative astrometry to Sgr A* #### The S2 dataset ### Fitting with a relativistic orbit PPN (1) terms: $$z = \frac{\Delta \lambda}{\lambda} = B_0 + B_{0.5}\beta + B_1\beta^2 + O(\beta^3)$$ $$B_1 = B_{1,\text{tD}} + B_{1,\text{gr}}$$ Year $$z_{\text{tot}} = z_{\text{K}} + f \left(z_{\text{GR}} - z_{\text{K}} \right)$$ f = 0: Kepler orbit f = 1: GR orbit (post-newtonian approximation) GRAVITY result: $\hat{c} = 0.94 \pm 0.09$ (wih precession) Mass of Sgr A*: $4.11 \pm 0.03 \times 10^6 \,\mathrm{M}_{\odot}$ (precision of 6×10^{-3}) Distance to Sgr A*: $8127 \pm 31 \text{ pc}$ (precision of 4×10^{-3}) Year ### The power of the GRAVITY data NACO+SHARP+spectroscopic data #### General relativity $\chi^2 = 1.86$ fitter: KeplerModel.curve_fit, nvary: 13, ndof: 119, red. chi2: 1.86± 0.13, BIC: 2453.35± 15.43, AICc: 2418.95 Roemer: True, Transverse Doppler: True, Gravitational redshift: True, Lensing: True, weights: {}, P: 16.052 +/-0.002 e: 0.885 +/-0.000, TiO: 2018.380 +/-0.000, Drega: 3.980 +/-0.003, arega: 1.160 +/-0.001, i: 2.336 +/-0.004 RO: 8.031 +/-0.065, Mo: 4.103 +/-0.055, x0naco: 1523.944 +/-162.935, y0naco: 1439.069 +/-184.701 vx0naco: 140 571 +/-24 4002 vx0naco: 216 125 +/-29 890 x0naco; viviv 0.000 +/-0.000 (fixed) ## Newton including the Rømer effect $\chi^2=1.79$ fitter: KeplerModel.curve_fit, nvary: 13, ndof: 119, red. chi2: 1.79± 0.13, BIC: 2445.46± 15.43, AICc: 2411.07 fitter: KeplerModel.curve_fit, nvary: 13, ndof: 119, red. chi2: 1.79± 0.13, BIC: 2445.46± 15.43, AICc: 2411.07 e. 0.885 +/-0.000, T0: 2018.380 +/-0.000, Omega: 3.943 +/-0.002, omega: 1.131 +/-0.001, i: 2.338 +/-0.004 R0: 8.220 +/-0.067, 10: 4.304 +/-0.060, x0naco: 1040.774 +/-158.723, y0naco: 1550.255 +/-182.104 vx0naco: 22.823 +/-22.950, vy0naco: 275.126 +/-30.009, x0grayity: 0.000 +/-0.000 (fixed) #### The power of the GRAVITY data GRAVITY+spectroscopic data ### General relativity $\chi^2=1.69$ fitter: GRModel.curve_fit, nvary: 9, ndof: 113, red. chi2: 1.69± 0.13, BIC: 1728.86± 15.03, AIC: 1705.23 Roemer: True, RedDop: True, RedGrav: True, Lens: True, P: 16.052 +/-0.002, e: 0.885 +/-0.000, T0: 2018.379 +/-0.000 Omega: 3.979 +/-0.001, omega: 1.150 +/-0.001, i: 2.341 +/-0.001, R0: 8.182 +/-0.015, M0: 4.144 +/-0.017 x0: 0.000 +/-0.000 (fixed), y0: 0.000 +/-0.000 (fixed), xv0: 0.000 +/-0.000 (fixed), vy0: 0.000 +/-0.000 (fixed) v20: -2.043 +/-2.430, spin: 0.000 +/-0.000 (fixed), PAIN: 1.239 +/-0.000 (fixed), NC: 2.356 +/-0.000 (fixed) ## Newton including the Rømer effect $\chi^2=3.79$ fitter: KeplerModel.curve_fit, nvary: 11, ndof: 111, red. chi2: 3.79± 0.13. BIC: 1988.02± 14.90, AIC: 1939.58 Roemer: True, Transverse Doppler: False, Gravitational redshift: False, Lensing: False, weights: {} P: 16.0526 +/-0.0023, e: 0.883825 +/-0.00023, T0: 2018.38112 +/-0.0003, Omega: 3.95978 +/-0.001 omega: 1.1409 +/-0.0015, iz: 2.33777 +/-0.0016, R0: 3.2922 +/-0.024, M0: 4.3579 +/-0.031, xOnacc: 0.000 +/-0.000 (fixed) y0nacc: 0.000 +/-0.000 (fixed), xOnacc: 0.000 +/-0.000 (fixed), xOgravity: 177 +/-39 With all 2017 & 2018 data: $f = 1.04 \pm 0.06$ Newton excluded at 16 σ #### Flares near the innermost stable circular orbit A&A 618, L10 (2018) https://doi.org/10.1051/0004-6361/201834294 © ESO 2018 #### LETTER TO THE EDITOR ## Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA** ``` GRAVITY Collaboration**: R. Abuter⁸, A. Amorim^{6,14}, M. Bauböck¹, J. P. Berger⁵, H. Bonnet⁸, W. Brandner³, Y. Clénet², V. Coudé du Foresto², P. T. de Zeeuw^{10,1}, C. Deen¹, J. Dexter^{1,***}, G. Duvert⁵, A. Eckart^{4,13}, F. Eisenhauer¹, N. M. Förster Schreiber¹, P. Garcia^{7,9,14}, F. Gao¹, E. Gendron², R. Genzel^{1,11}, S. Gillessen¹, P. Guajardo⁹, M. Habibi¹, X. Haubois⁹, Th. Henning³, S. Hippler³, M. Horrobin⁴, A. Huber³, A. Jiménez-Rosales¹, L. Jocou⁵, P. Kervella², S. Lacour^{2,1}, V. Lapeyrère², B. Lazareff⁵, J.-B. Le Bouquin⁵, P. Léna², M. Lippa¹, T. Ott¹, J. Panduro³, T. Paumard^{2,***}, K. Perraut⁵, G. Perrin², O. Pfuhl^{1,***}, P. M. Plewa¹, S. Rabien¹, G. Rodríguez-Coira², G. Rousset², A. Sternberg^{12,15}, O. Straub², C. Straubmeier⁴, E. Sturm¹, L. J. Tacconi¹, F. Vincent², S. von Fellenberg¹, I. Waisberg¹, F. Widmann¹, E. Wieprecht¹, E. Wiezorrek¹, J. Woillez⁸, and S. Yazici^{1,4} ``` (Affiliations can be found after the references) Received 21 September 2018 / Accepted 5 October 2018 ### Flares at the Galactic Center #### Flares near the innermost stable circular orbit 3 flares observed on May 27, July 22 and 28 2018 Model fitting with a relativistic hot spot model (NERO, GYOTO) Schwarzschild case (a=0): $R = 7.3 \pm 0.5 \text{ R}_g$ $P = 40 \pm 8 \text{ min}$ $\Rightarrow v_{\text{orb}} \sim 0.3 \text{ c}$ ### Polarization loops Poloidal magnetic field (perpendicular to orbital plane) Flare of July 28: $P_{\text{pol}} = 48 \pm 6 \text{ min}$ Light bending by Sgr A* adds an azimutal component to polarization with an orbit-like motion Compatible with a low inclination (15-30°) and a 7-8 R_g orbital radius. #### Constraint on inclination and orbital radius $R = 7.6 \pm 0.5 Rg$ and inclination 15-30° ## Orbital motions are fully compatible with a 4 million solar mass black hole # Complementary measurements at millimeter wavelengths ### First image of Sgr A* at 86 GHz (3.5 mm) #### (u,v) coverage ### First image of Sgr A* at 86 GHz (3.5 mm) **Modeling:** only disks at moderate viewing angles and jet with viewing angles $\leq 20^{\circ}$ are consistent with 1 and 3mm sizes and asymmetry constraints => Fully compatible with the constraints derived from the GRAVITY data # Contributions of GRAVITY and the EHT to tests of general relativity ### More with GRAVITY? ### Measuring the relativistic precession of S2 $$\Delta\Phi_{per\ orbit} = f_{SP} \times 3\pi \left(\frac{R_s}{a(1-e^2)}\right) + f_{LT} \times 2\chi \left(\frac{R_s}{a(1-e^2)}\right)^{3/2}$$ $PPN(1)_{\Phi}$: Schwarzschild Precession *S*2:11.9' With the current data (up to Sep 2018): $$f_{\rm SP} = 1.3 \pm 0.8$$ Robust detection in 2019 ## Orbits of nearby stars Imaging of the central 100 mas (one night) After 15 months of observing: Simulation of the S star cluster downscaled to 100 mas Schwarzschild precession Kerr precession and spin measurement Measurement of the quadrupolar moment? Lense-Thirring effect and precession of the quadrupolar moment Precession of the orbital plane (precession of the angular momentum vector around the BH spin vector) No-hair theorem: only 3 parameters describe a black hole: mass M, spin J, electric charge Quadrupolar moment: $Q_2 = -J^2 / M$ The measurement of precession due to frame dragging in a few years with orbits of size 0,2 - 1 mpc (5 - 25 mas) Merritt et al. (2010) ### A flare with ≤ 30 minute period to constrain the spin? ### Thank you for your attention! Special thanks to Thibaut Paumard, Frédéric Vincent, Reinhard Genzel, Oliver Pfuhl, Frank Eisenhauer and the members of the GRAVITY consortium!