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The ISM: a multi-phase medium
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The ISM: a multi-scale medium

Huge dynamical range of length scales

Equipartition between many kinds of energy

=> a multi-physics problem

HIM WNM CNM Diffuse Dense Discs Sun
Density p [cm™”] 0.004 0.6 30 200 10" 10" 1 g.cm ™
rat 310° 5000 100 50 10 300 10
Length scale L [pc] 100 10 : 0.1 200 AU 5.10 % AU
Velocity U [km.s™'] 10 10 : 0.1 0.1 1
M 0.2 13 0.5 0.1 0.02

Mg 130 15 0.8 0.08 0.003
R 10? 5 107 10° 107 1017
R, 1077 107 107 10° 1010
Rap 103 102 104 10° 1020
Ionisation fraction 1 : 104 * 10~ 1077
Mass per ion [amul] 1 12 12 24
N.B. [3.10%cm2uG] 1.2 . 0.09 . 0.2 2

N.[10"cm™?] 0.5 3 : 1 10

(HDR P. Lesaffre)






Global simulations of the ISM

RAMSES: MHD with cooling and gravity (self+galactic)

Hennebelle (2018)
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Z.oom simulation

Refinement levels:
Preset zoom, plus adaptive refinement Hennebelle (2018)

Note: 18 levels
2% ~ 260 000

One simulation ~ 10 Million CPU hours (PRACE project: FRIGG)



Z.ooming In

Hennebelle (2018)
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Z.ooming In

Hennebelle (2018)
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Z.ooming In

Hennebelle (2018)
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Z.oom simulations

Bridge the galactic scales and the small scales
Provide clumps in their natural environment
Drawbacks:

Cost, lack of numerical control (resolution etfects,
sticking self-gravitating pixels)

=> Huge potential for the near future
Self-gravitating

Clump statistics from
Hennebelle (2018)




L.ocal simulations

100 000 CPUh each
Homogeneous turbulence => morphology statistics
Single objects => parameter studies

More physics: radiative transfer
(Commercon,Valdivia), minimal chemistry
(Valdivia), dissipation (Masson, Momferratos)

(Still missing: dust grains physics)



Ex: dissipation in the turbulent ISM
(ERC MIST: E. Falgarone)

Origin of molecules in dilute and violent media ?

CO observed in diffuse irradiated media, Warm H,
extragalactic (z=2) and galactic CH"

< MHD turbulence dissipation ?

energy is dissipated in localised structures which may
affect the chemistry and magnetic fields

=> Simulations of incompressible (pseudo-spectral) and
compressible (grid-based) decaying MHD turbulence.
Standard codes, focus on dissipation.

~2-3 million CPU h /yr, 640 cores ERC machine which will be
incorporated in the mesoPSL pool.



1 pc

Ex: dissipation is dominated by
incompressible modes

Projection of dissipative heating in the plane of sky
Mach O around time of peak total dissipation Y ET !

NN

Viscous Viscous incompressible

Dissipation happens on sheets which project as ridges on the sky
Structures are similar in compressible and incompressible runs
Most dissipation happens at small convergence (-div(u) small)



Link to observations:
which data representation ?

Van Gogh: la nuit étoilée



Link to observations:
which data representation ?

= Bitmap

= Fourier spectrum

= Clump/filaments statistics

= Intermittency signatures

= Wavelet scattering coefficients

= Reduced wavelet scattering coefficients
(Allys+2019)



Data statistical reconstruction
(Allys+2019, submitted)

(1 out of 20 projections of snapshots Same power spectrum
of a MHD simulation) Random phases

Gaussian synthesis
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1D <~ 3D Painting the simulations
€X: Levrier+2012, PDR post-processing

Multiphase simulations p(l.o.s.) < 1D Meudon PDR code

PDR post-processing

1 Ozu 1 021 1 022_
N(H, )




1D < 3D Painting the simulations:
going closer to the observations

= Fulerian: detect steady structures (e.g. shocks) and
model them (0D/1D)

= Lagrangian: replay (T,p) history of fluid parcels (0D)

Ex: Ruaud+2018

chemical model.

Extracting the "
fime 510

D galactic SPH model (Bonnell et al, 2013) I ' Histories used as input parameters of the

dependent

physical
parameters of 2 |eois i s e
cells of

material

forming

several cold

cores.

Credits: V. Wakelam
=> Efforts to design Sub-grid models



1D < 3D Prospects

>

Intermittent
statistics of the

L Vielecular yields firom
dissipation

ShocKs (Ter example)

b=0.1,n;=10° profiles

3D simulations

(cf Momferratos et al. 2013) LIDESImENenNS




1D/0D models

= Few minutes CPU on a laptop => huge grids
= Can incorporate detailed microphysics

= Complex radiative transfer

= Detailed chemistry (gas, grain, state-to-state)

= Bin size by bin size dust growth / fragmentation /
adsorption / desorption / sputtering / erosion

= Need advances in the underlying microphysics

PDR Code DustEM Shock Starformat

The Meudon PDR code Dust Emission Paris-Durham Shock model MHD simulations data base

http://ism.obspm.1ir




http://ism.obspm.ir
ISMDB

Credits: F. Le Petit

Services PARTHERS REGISTRATION

ISM DataBase - Inverse Search service

Grid of isebaric PDR 1.5.2 models

2016.12.03

1 - search among two parameters Select the searched input parameters

Example of a search:
v G0 obspryer side (Mathis_unit) o scale = gas pressure
* UV intensity

X Pgas_0 [em=3_K) og scale

2 - fix all the other parameters

Fix the other input parameters
Example: size of the cloud

AN max

3 - observational constraints

Enter the observations
Example: observations CO and Hz intensities

HCO v=0=1->v=0,=0 angle 0D degy’ > 1.8¢ 1.8107 < {CO 1-0) <2.4 107 erg cm-2 s-1 sr-1

WCD w=id|=1-3v=0]=0 angle 00 deg)* =

H2 v=0=2->v=0J=0 angle 60 deg)" > 16~ 1.0 10® <I(H2 2-0) <5.0 107 erg cm-2 -1 sr-1

KHZ v=0 =2 -2w=0]=0 angle 60 deg)” < 5E-7

| SMServices CODES ISMDB TECHNOLOGIES PARTNERS REGISTRATION

standards credits



Collisional Rates computation

Large range of computational needs:
10° — 10" CPU hours

* Scattering dynamics
* Qllﬂ]ll'lll]] freatment

* Potential energy surface
» Ab inifio methods

Gold standard: CCSD(T)
Commercial codes (e.g.
MOLPRO)

Parallel

N’ scaling (N the system
s1Z€)

Sampling ~ 10 000
geometries

1 geometry is 1-10 CPU hour
Memory < 100 GB

Gold standard: close-
coupling

Public codes (e.g.
MOLSCAT)

Parallel

N3 scaling

Sampling: 100-1000 energies
1 energy is 10-100 partial
waves

1 partial wave 1s 1-100 CPU
hour

Memory > 1 TB for large
systems

Credits: A. Faure



EX: recent advances in theory vs. XP
comparisons

Adiabalic <1 slaies
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Gas phase
astrochemistry

Anisotropic DR rate cocfficient (em

Excellent agreement between calculated
and experimental SH* + e- dissociative

recombination rate coefficients D. Kashinski
et al. JCP 2017

Solide state astrochemistry

Map of adsorption sites for benzene on an ISM
ice. E. Michoulier et al. PCCP 2018

Credits: A. Faure



Dust Physics:
everywhere through the galactic cycle

= Controls radiated energy during star formation

= Catalyst for H_

= Jces & path to molecular complexity=> grain
surface chemistry

= AGB winds launching => feedback

= Coupling to B field: ionisation degree, mass loading

= Planck foregrounds, polarisation & B structure

= Dust spinning and disruption (see recent. Thiem +
Tram 2018-2019 papers)



Line shapes probe chemical and
dynamical information

= Line shifts explained by H_ ortho/para rise in
decelerating gas (Neufeld+19, submitted)

= Broadening by thermal Doppler and velocity range
=>Future: 3D modeling as in Tram+2018

HH7 Position 1
Odd/even shift of 1.5 km/s

25 km/s C-shock: ng = 10° em™3, OPRy = 0.01
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HH7 EXES observations LSR velocity (km/s) Paris-Durham shock model



Exascale challenge

= New hardwares (ARM vs x86 architectures)
motivated by smartphones and video games

= Towards more cores with less power spent
= Hybrid mixture of cores

=> We need good engineers and to talk to them
(ex: DUMSES for GPU by M. Joos)







Harmonic phases synthesis
(S. Mallat)

Simulation Reconstruction
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And it needs only one image...



Dissipative structures extraction

Find connected sets where dissipation > mean + n.std

— 2.5e+01

20

gnitude

vect B NMa

Thibaud Richard



1D < 3D Prospects

Intermittent 4
statistics of the

L Vielecular yields firom
dissipation

ShocKs (Ter example)

b=0.1,n;=10° profiles

3D simulations

(cf Momferratos et al. 2013) LIDESImENenNS
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