

ISM in Silico

Pierre Lesaffre

Thanks:

A. Faure, P. Hennebelle, B. Godard,F. Levrier, E. Falgarone, F. Le Petit,E. Allys, V. Wakelam

The ISM: a multi-phase medium

The ISM: a multi-scale medium

- Huge dynamical range of length scales
- Equipartition between many kinds of energy

=> a multi-physics problem

	HIM	WNM	CNM	Diffuse	Dense	Discs	Sun
Density $\rho [\mathrm{cm}^{-3}]$	0.004	0.6	30	200	10^{4}	10^{10}	1 g.cm^{-3}
Temperature T [K]	3.10^{5}	5000	100	50	10	300	10^{6}
Length scale L [pc]	100	50	10	3	0.1	200 AU	$5.10^{-3} \mathrm{AU}$
Velocity $U [\rm km.s^{-1}]$	10	10	10	3	0.1	0.1	1
\mathcal{M}	0.2	2	13	7	0.5	0.1	0.02
\mathcal{M}_{G}	130	20	15	6	0.8	0.08	0.003
\mathcal{R}	10^{2}	10^{5}	10^{7}	10^{7}	10^{6}	10^{9}	10^{17}
\mathcal{R}_m	10^{21}	10^{20}	10^{18}	10^{17}	10^{15}	10^{9}	10^{10}
\mathcal{R}_{AD}	10^{3}	10^{3}	10^{2}	10^{3}	10^{4}	10^{5}	10^{20}
Ionisation fraction	1	10^{-2}	10^{-4}	10^{-4}	10^{-4}	10^{-7}	1
Mass per ion [amu]	1	1	12	12	12	24	1
$N_e B_z [3.10^{18} {\rm cm}^{-2} \mu {\rm G}]$	1.2	0.9	0.09	0.1	0.2	2	3×10^{16}
$N_e [10^{18} { m cm}^{-2}]$	0.5	5	3	3	1	10^{4}	10^{28}

(HDR P. Lesaffre)

Global simulations of the ISM

NGC 891 (AOP)

Global simulations of the ISM

RAMSES: MHD with cooling and gravity (self+galactic)

Zoom simulation

Refinement levels:

Preset zoom, plus adaptive refinement

Hennebelle (2018)

One simulation ~ 10 Million CPU hours (PRACE project: FRIGG

Zooming in

Zooming in

Zooming in

Zoom simulations

- Bridge the galactic scales and the small scales
- Provide clumps in their natural environment
- Drawbacks:
 - Cost, lack of numerical control (resolution effects, sticking self-gravitating pixels)
 - => Huge potential for the near future

Self-gravitating Clump statistics from Hennebelle (2018)

Local simulations

- 100 000 CPUh each
- Homogeneous turbulence => morphology statistics
- Single objects => parameter studies

 More physics: radiative transfer (Commerçon, Valdivia), minimal chemistry (Valdivia), dissipation (Masson, Momferratos)
 (Still missing: dust grains physics)

Ex: dissipation in the turbulent ISM (ERC MIST: E. Falgarone)

Origin of molecules in dilute and violent media?

CO observed in diffuse irradiated media, Warm H₂, extragalactic (z=2) and galactic CH⁺

↔ MHD turbulence dissipation ?

energy is dissipated in localised structures which may affect the chemistry and magnetic fields

=> Simulations of incompressible (pseudo-spectral) and compressible (grid-based) decaying MHD turbulence. Standard codes, focus on dissipation.

~2-3 million CPU h / yr, 640 cores ERC machine which will be incorporated in the mesoPSL pool.

Ex: dissipation is dominated by incompressible modes

Projection of dissipative heating in the plane of sky around time of peak total dissipation

Mach 4

Mach 0

1 pc

Ohmic, Viscous, Ambipolar

Ohmic, Viscous incompressible Viscous compressible

- Dissipation happens on sheets which project as ridges on the sky
- Structures are similar in compressible and incompressible runs
- Most dissipation happens at small convergence (-div(u) small).

Link to observations: which data representation ?

Van Gogh: la nuit étoilée

Link to observations: which data representation ?

- Bitmap
- Fourier spectrum
- Clump/filaments statistics
- Intermittency signatures
- Wavelet scattering coefficients
- Reduced wavelet scattering coefficients (Allys+2019)

Data statistical reconstruction (Allys+2019, submitted)

(1 out of 20 projections of snapshots of a MHD simulation)

Same power spectrum Random phases

(1000 coeffs)

(N.B.:

Same Wavelet Scattering Coefficients Same Reduced Wavelet Scattering Coefficients

1D ↔ **3D Painting the simulations ex:** Levrier+2012, PDR post-processing <u>Multiphase simulations ρ(l.o.s.)</u> ↔ 1D Meudon PDR code

1D ↔ **3D Painting the simulations: going closer to the observations**

- Eulerian: detect steady structures (e.g. shocks) and model them (0D/1D)
- Lagrangian: replay (Τ,ρ) history of fluid parcels (0D)
 Ex: Ruaud+2018

Extracting the time dependent physical parameters of cells of material forming several cold cores. Histories used as input parameters of the chemical model.

Wakelam

=> Efforts to design Sub-grid models

1D ↔ **3D Prospects**

Intermittent statistics of the dissipation

3D simulations (cf Momferratos et al. 2013)

Dissipation strength => Molecules Formation + excitation

1D simulations CO map Validation with 2D simulations

1D/0D models

- Few minutes CPU on a laptop => huge grids
- Can incorporate detailed microphysics
- Complex radiative transfer
- Detailed chemistry (gas, grain, state-to-state)
- Bin size by bin size dust growth / fragmentation / adsorption / desorption / sputtering / erosion
- Need advances in the underlying microphysics

http://ism.obspm.fr ISMDB

Credits: F. Le Petit

SM DataBase - Ir Grid of isobaric PDR 1.5.2 mod 2016.12.03	nverse Search servi	CE Beta	
1 - search among two pa	arameters		1 Select the searched input parameters
Pgas_0	(cm-3_K)	🗹 log scale	Example of a search:
C0 observer side	(Mathis_unit)	🗹 log scale	gas pressure
AVmax	(mag)	10	② Fix the other input parameters Example: size of the cloud
- observational constit			3 Enter the observations
Search for available quantities Ex: N(H) Use			Example: observations CO and H ₂ intensities
"I(CO v=0,J=1->v=0,J=0 angle "I(CO v=0,J=1->v=0,J=0 angle "I(H2 v=0,J=2->v=0,J=0 angle "I(H2 v=0,J=2->v=0,J=0 angle	e 00 deg)" > 1.8E-7 e 00 deg)" < 2.4E-7 e 60 deg)" > 1E-8 e 60 deg)" < 5E-7		1.8 10 ⁻⁷ < I(CO 1-0) < 2.4 10 ⁻⁷ erg cm-2 s-1 sr-1 1.0 10 ⁻⁸ < I(H2 2-0) < 5.0 10 ⁻⁷ erg cm-2 s-1 sr-1

CODES

ISMDB

TECHNOLOGIES standards PARTNERS credits

REGISTRATION

Collisional Rates computation

Large range of computational needs: $10^3 - 10^7$ CPU hours

- Potential energy surface
 - Ab initio methods
 - Gold standard: CCSD(T)
 - Commercial codes (e.g. MOLPRO)
 - Parallel
 - N⁷ scaling (N the system size)
 - Sampling ~ 10 000 geometries
 - 1 geometry is 1-10 CPU hour
 - Memory < 100 GB

- Scattering dynamics
 - Quantum treatment
 - Gold standard: closecoupling
 - Public codes (e.g. MOLSCAT)
 - Parallel
 - N³ scaling
 - Sampling: 100-1000 energies
 - 1 energy is 10-100 partial waves
 - 1 partial wave is 1-100 CPU hour
 - Memory > 1 TB for large systems

Credits: A. Faure

Ex: recent advances in theory vs. XP comparisons

Gas phase astrochemistry

Excellent agreement between calculated and experimental SH⁺ + e- dissociative recombination rate coefficients D. *Kashinski et al. JCP 2017*

Map of adsorption sites for benzene on an ISM ice. *E. Michoulier et al. PCCP 2018*

Dust Physics: everywhere through the galactic cycle

- Controls radiated energy during star formation
- Catalyst for H₂
- Ices & path to molecular complexity=> grain surface chemistry
- AGB winds launching => feedback
- Coupling to B field: ionisation degree, mass loading
- Planck foregrounds, polarisation & B structure
- Dust spinning and disruption (see recent Thiem + Tram 2018-2019 papers)

Line shapes probe chemical and dynamical information

- Line shifts explained by H₂ ortho/para rise in decelerating gas (Neufeld+19, *submitted*)
- Broadening by thermal Doppler and velocity range =>Future: 3D modeling as in Tram+2018

Exascale challenge

- New hardwares (ARM vs x86 architectures) motivated by smartphones and video games
- Towards more cores with less power spent
- Hybrid mixture of cores
- => We need good engineers and to talk to them (ex: DUMSES for GPU by M. Joos)

THANKS !

Harmonic phases synthesis (S. Mallat)

Simulation

Reconstruction

And it needs only one image...

Dissipative structures extraction

Find connected sets where dissipation > mean + n.std

1D ↔ **3D Prospects**

Intermittent statistics of the dissipation

3D simulations (cf Momferratos et al. 2013)

Dissipation strength => Molecules Formation + excitation

1D simulations CO map Validation with 2D simulations