

Credit: scienceatcal.berkeley.edu

SPECTROSCOPIC SURVEYS UNVEALING THE GALACTIC STELLAR HALO

EMMA FERNÁNDEZ-ALVAR, CARLOS ALLENDE PRIETO, LETICIA CARIGI, ALEJANDRA RECIO-

SFA 14-17 May 2019

GALACTIC ARCHAEOLOGY

Chemistry and kinematical and dynamical properties of the stars:

- Accurate chemical abundance determination (high-resolution spectra)
 - Accurate distance and velocity measurements.

Up to now:

- Inner halo with high-resolution spectra and accurate astrometry (e.g., APOGEE, Gaia)
 - Outer halo with low-resolution spectra (e.g., SEGUE,

THE GALACTIC STELLAR HALO BEFORE GAIA

- Lambda - Cold Dark Matter model: galaxies formed from the accretion of smaller subsystems: several observational evidences.

Different spatial, kinematical and chemical properties as a function of distance: inner and outer halo (r ~ 15-20 kpc):

Different formation scenario. (e.g., Carollo et al. 2007, 2010)

THE GALACTIC STELLAR HALO BEFORE GAIA

[Fe/H] < -2.5 -2.5 < [Fe/H] < -1.8 -1.8 < [Fe/H] < -1.1 [Fe/H] > -1.1

Fernández-Alvar et al. 2015

Distant surveys limited to low-resolution spectra

Chemical gradients with distance from the Galactic center, depending on metallicity.

THE GALACTIC STELLAR HALO BEFORE GAIA

Fernández-Alvar et al. 2017

Lack of accurate chemical abundances to explore the outer halo.

Gradients confirmed in high-resolution spectra (APOGEE DR12) in several chemical species.

TWO DIFFERENT STELLAR POPULATIONS IN FIELD STARS

Fernández-Alvar et al. 2018

TWO DIFFERENT STELLAR POPULATIONS IN FIELD STARS

Fernández-Alvar et al. 2018

Comparison with chemical evolution models to infer the upper mass limit of the IMF and the SFR.

THE GAIA REVOLUTION

GAIA SAUSAGE (GAIA DR1 + TGAS)

Belokurov et al. (2018)

[Fe/H] > -1.7 orbital anisotropy: major merger event at the epoch of the disc formation

Gaia collaboration, Babusiaux et al. 2018a

Inner halo distributed in two populations (sequences in the HR diagram).

Haywood et al. 2018

Nissen & Schuster 2010 sample APOGEE DR14 high-alpha and low-alpha populations indistinguishable at [Fe/H] < -1.1

WHAT IS THE ORIGIN OF THE RED SEQUENCE WITH DISK-LIKE CHEMISTRY BUT HALO-LIKE KINEMATICS?

WHICH POPULATION (IN-SITU OR ACCRETED) DOMINATES THE INNER HALO?

WHAT IS THE CONTRIBUTION OF EACH POPULATION TO THE RADIAL GRADIENTS?

OBSERVATIONS AND COSMOLOGICAL SIMULATIONS

Fernández-Alvar et al. (2019a)

AGE DISTRIBUTION

Second star burst of star formation at distances larger than 15 kpc due to a massive satellite

[O/FE] DISTRIBUTION AS A FUNCTION OF THEIR ACCRETED OR IN-SITU ORIGIN

Gradient caused by accreted stars

MASS DISTRIBUTION

Intermediate mass satellites dominating at r < 15 kpc with high-[Mg/Fe] and massive satellites dominating at r > 15 kpc with low-[Mg/Fe]

low mass satellites: Mdyn < 10^9Msun

intermediate mass satellites: 10^9Msun<Mdyn<10^10Msun

massive satellites: Mdyn > 10^10Msun

THE THICK-DISK AND THE HALO: THE METAL RICH HALO TAIL WITH Z

Fernández-Alvar et al. (2019b)

THE METAL-RICH HALO TAIL WITH Z

Fernández-Alvar et al. (2019b)

MDF

TOOMRE DIAGRAM

Metal-rich stars (high-[Mg/Fe], I- Halo-like kinematics, except [Mg/Fe] and low-[Mg/Fe] up to for the I-[Mg/Fe] group $|z| \sim 10 \text{ kpc}$

ACTION SPACE

High-[Mg/Fe] with almost no rotation but a tail towards the disk locus

CHEMICALLY DISTINCT

ALPHA

OTHERS

OLD THICK DISK OR IN-SITU HALO?

THE MILKY WAY HAS NO IN-SITU HALO BUT IT HAS A THICK DISC. COMPOSITION OF THE STELLAR HALO AND AGE-DATING THE LAST SIGNIFICANT MERGER WITH GAIA DR2 AND APOGEE

Di Matteo et al. 2018 (arXiv:1812.08232)

THE BIRTH OF THE MILKY WAY: THE IN-SITU HALO AND EARLY THICK DISK AS UNCOVERED BY ACCURATE STELLAR AGES WITH GAIA Gallart et al. 2019 (arXiv:1901.02900)

FUTURE WORK: THE MAUNAKEA SPECTROSCOPIC EXPLORER

TARGET THE OUTER HALO

Accurate chemical abundances of millions of stars in the outer halo:

- Characterize the chemical gradients and compare with simulations.

 Identify distinct stellar populations and use chemical evolution models to infer IMF and SFH of the outer halo building blocks.
Accretion history.

LOOFING FOR THE VERY FIRST STARS

Understand the first steps of Galaxy formation by the characterization of ver metal-poor stars [Fe/H] < -3 and their distribution accross the halo.

