

Journées de la SF2A 2019

A spectroscopic study of the giant low surface brightness galaxy Malin 1

Junais

Main Collaborators:

Samuel Boissier Barry Madore Armando Gil de Paz

Philippe Amram Jin Koda Juan Carlos Munos Mateos **Benoit Epinat** Alessandro Boselli Laurent Chemin

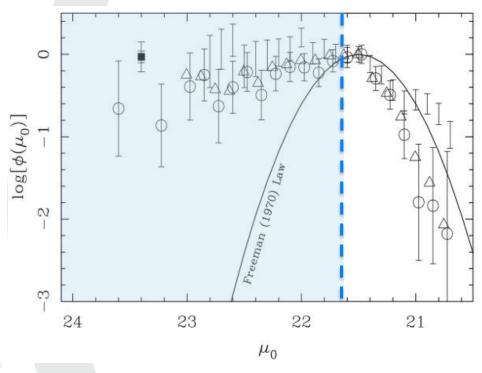
Journées de la SF2A 2019



A spectroscopic study of the giant low surface brightness galaxy Malin 1

Junais

Main Collaborators:

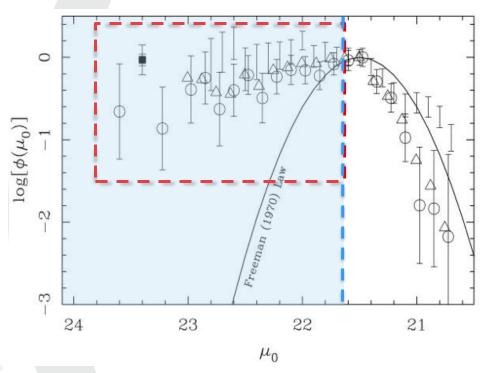

- Samuel Boissier
- Philippe Amram
- Benoit Epinat
- Barry Madore
- Jin Koda
- Alessandro Boselli
- Armando Gil de Paz
- Juan Carlos Munos Mateos
- Laurent Chemin

Low Surface Brightness Galaxies (LSBs): Definition

Historical definition of LSBs based on central surface brightness (Freeman 1970):

 $\mu_{0,B} \ge 21.65 \text{ mag arcsec}^{-2}$

De Blok (2006)



4

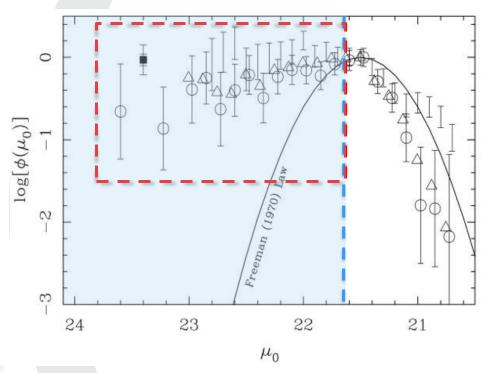
Low Surface Brightness Galaxies (LSBs): Definition

 Historical definition of LSBs based on central surface brightness (Freeman 1970):

$$\mu_{0,B} \ge 21.65 \text{ mag arcsec}^{-2}$$

LSBs may account up to 50% of all the galaxies in the universe (*Impey & Bothun 1997*)

De Blok (2006)



Low Surface Brightness Galaxies (LSBs): Definition

Historical definition of LSBs based on central surface brightness (Freeman 1970):

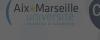
$$\mu_{0,B} \ge 21.65 \text{ mag arcsec}^{-2}$$

LSBs may account up to 50% of all the galaxies in the universe (Impey & Bothun 1997)

De Blok (2006)

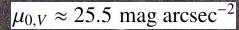
Important to study this large population of galaxies!!

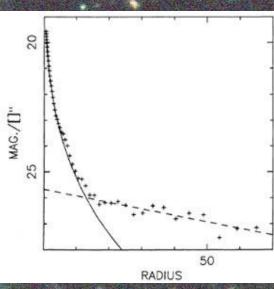
Journées de la SF2A 2019

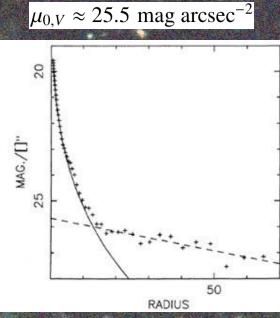


A spectroscopic study of the giant low surface brightness galaxy Malin 1

Junais


Main Collaborators:


- Samuel Boissier
- Philippe Amram
- Benoit Epinat
- Barry Madore
- Jin Koda
- Alessandro Boselli
- Armando Gil de Paz
- Juan Carlos Munos Mateos
- Laurent Chemin



Bothun et al. 1987

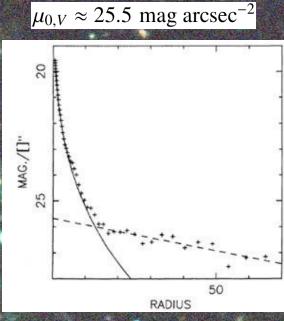
An extreme case of LSB !!

MALIN 1

> 200 kpc diameter



Bothun et al. 1987


An extreme case of LSB !!

MALIN 1

> 200 kpc diameter

MilkyWay

Bothun et al. 1987

An extreme case of LSB !!

A new interest for Malin 1 & other giant LSBs

DEEP OPTICAL IMAGES OF MALIN 1 REVEAL NEW FEATURES

Gaspar Galaz¹, Carlos Milovic^{2,3,4}, Vincent Suc^{1,5}, Luis Busta⁶, Guadalupe Lizana¹, Leopoldo Infante^{1,7}, and Santiago Royo⁵

2015

ON THE CLASSIFICATION OF UGC 1382 AS A GIANT LOW SURFACE BRIGHTNESS GALAXY

Lea M. Z. Hagen^{1,2}, Mark Seibert³, Alex Hagen^{1,2}, Kristina Nyland^{4,5,6}, James D. Neill⁷, Marie Treyer⁸, Lisa M. Young⁴, Jeffrey A. Rich^{3,9}, and Barry F. Madore³

2016

The properties of the Malin 1 galaxy giant disk

A panchromatic view from the NGVS and GUViCS surveys*

S. Boissier¹, A. Boselli¹, L. Ferrarese², P. Côté², Y. Roehlly¹, S. D. J. Gwyn², J.-C. Cuillandre³, J. Roediger⁴

J. Koda^{5,6,7}, J. C. Muños Mateos⁸, A. Gil de Paz⁹, and B. F. Madore¹⁰

2016

GMRT H_I study of giant low surface brightness galaxies

Alka Mishra^{1,2*}, N. G. Kantharia, ^{3*}, M. Das⁴, A. Omar¹ and D. C. Srivastava ²

2016

Formation of a Malin 1 analogue in IllustrisTNG by stimulated accretion

Qirong Zhu^{1,2*}, Dandan Xu³, Massimo Gaspari^{4†}, Vicente Rodriguez-Gomez⁵, Dylan Nelson⁶, Mark Vogelsberger^{7‡}, Paul Torrey⁷§, Annalisa Pillepich⁸, Jolanta Zjupa^{3,9}, Rainer Weinberger³, Federico Marinacci⁷, Rüdiger Pakmor³, Shy Genel^{10,11}, Yuexing Li¹, Volker Springel^{3,6,12}, and Lars Hernquist²

2018

A Malin 1 "cousin" with counter-rotation: internal dynamics and stellar content of the giant low surface brightness galaxy UGC 1922

Anna S. Saburova, ^{1*} Igor V. Chilingarian, ^{2,1} Ivan Yu. Katkov, ¹ Oleg V. Egorov, ^{1,5} Anastasia V. Kasparova, ¹ Sergey A. Khoperskov, ^{3,4} Roman I. Uklein, ⁵ Olga V. Vozyakova ¹

A new interest for Malin 1 & other giant LSBs

DEEP OPTICAL IMAGES OF MALIN 1 REVEAL NEW FEATURES

GASPAR GALAZ¹, CARLOS MILOVIC^{2,3,4}, VINCENT SUC^{1,5}, LUIS BUSTA⁶, GUADALUPE LIZANA¹, LEOPOLDO INFANTE^{1,7}, AND SANTIAGO ROYO⁵

2015

ON THE CLASSIFICATION OF UGC 1382 AS A GIANT LOW SURFACE BRIGHTNESS GALAXY

Lea M. Z. Hagen^{1,2}, Mark Seibert³, Alex Hagen^{1,2}, Kristina Nyland^{4,5,6}, James D. Neill⁷, Marie Treyer⁸, LISA M. YOUNG⁴, JEFFREY A. RICH^{3,9}, AND BARRY F. MADORE³

2016

The properties of the Malin 1 galaxy giant disk

A panchromatic view from the NGVS and GUViCS surveys*

S. Boissier¹, A. Boselli¹, L. Ferrarese², P. Côté², Y. Roehlly¹, S. D. J. Gwyn², J.-C. Cuillandre³, J. Roediger⁴ J. Koda^{5,6,7}, J. C. Muños Mateos⁸, A. Gil de Paz⁹, and B. F. Madore¹⁰

2016

GMRT H_I study of giant low surface brightness galaxies

Alka Mishra^{1,2*}, N. G. Kantharia, ^{3*}, M. Das⁴, A. Omar¹ and D. C. Srivastava ²

2016

Formation of a Malin 1 analogue in IllustrisTNG by stimulated accretion

Qirong Zhu^{1,2*}, Dandan Xu³, Massimo Gaspari⁴†, Vicente Rodriguez-Gomez⁵, Dylan Nelson⁶, Mark Vogelsberger⁷‡, Paul Torrey⁷§, Annalisa Pillepich⁸, Jolanta Zjupa^{3,9}, Rainer Weinberger³, Federico Marinacci⁷, Rüdiger Pakmor³, Shy Genel^{10,11}, Yuexing Li¹, Volker Springel^{3,6,12}, and Lars Hernquist²

2018

A Malin 1 "cousin" with counter-rotation: internal dynamics and stellar content of the giant low surface brightness galaxy UGC 1922

Anna S. Saburova, 1* Igor V. Chilingarian, 2,1 Ivan Yu. Katkov, 1 Oleg V. Egorov, 1,5 Anastasia V. Kasparova, ¹ Sergey A. Khoperskov, ^{3,4} Roman I. Uklein, ⁵ Olga V. Vozyakova ¹

A new interest for Malin 1 & other giant LSBs

DEEP OPTICAL IMAGES OF MALIN 1 REVEAL NEW FEATURES

Gaspar Galaz¹, Carlos Milovic^{2,3,4}, Vincent Suc^{1,5}, Luis Busta⁶, Guadalupe Lizana¹, Leopoldo Infante^{1,7}, and Santiago Royo⁵

2015

ON THE CLASSIFICATION OF UGC 1382 AS A GIANT LOW SURFACE BRIGHTNESS GALAXY

Lea M. Z. Hagen^{1,2}, Mark Seibert³, Alex Hagen^{1,2}, Kristina Nyland^{4,5,6}, James D. Neill⁷, Marie Treyer⁸, Lisa M. Young⁴, Jeffrey A. Rich^{3,9}, and Barry F. Madore³

2016

The properties of the Malin 1 galaxy giant disk

A panchromatic view from the NGVS and GUViCS surveys*

S. Boissier¹, A. Boselli¹, L. Ferrarese², P. Côté², Y. Roehlly¹, S. D. J. Gwyn², J.-C. Cuillandre³, J. Roediger⁴

J. Koda^{5,6,7}, J. C. Muños Mateos⁸, A. Gil de Paz⁹, and B. F. Madore¹⁰

2016

GMRT H_I study of giant low surface brightness galaxies

Alka Mishra^{1,2*}, N. G. Kantharia, ^{3*}, M. Das⁴, A. Omar¹ and D. C. Srivastava ²

2016

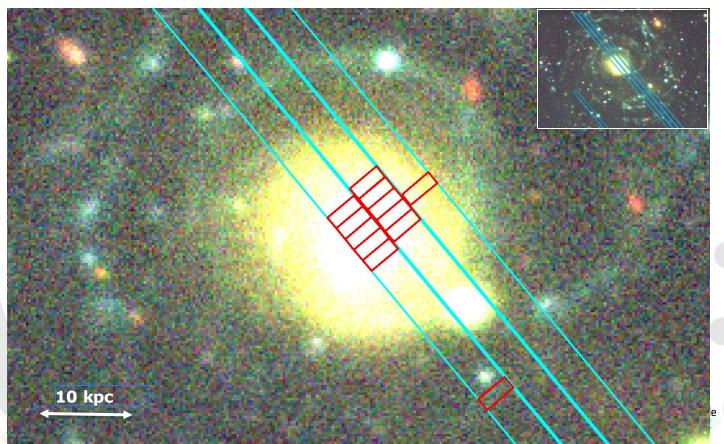
Formation of a Malin 1 analogue in IllustrisTNG by stimulated accretion

Qirong Zhu^{1,2*}, Dandan Xu³, Massimo Gaspari^{4†}, Vicente Rodriguez-Gomez⁵, Dylan Nelson⁶, Mark Vogelsberger^{7‡}, Paul Torrey⁷§, Annalisa Pillepich⁸, Jolanta Zjupa^{3,9}, Rainer Weinberger³, Federico Marinacci⁷, Rüdiger Pakmor³, Shy Genel^{10,11}, Yuexing Li¹, Volker Springel^{3,6,12}, and Lars Hernquist²

2018

A Malin 1 "cousin" with counter-rotation: internal dynamics and stellar content of the giant low surface brightness galaxy UGC 1922

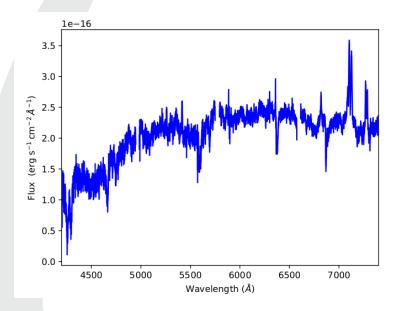
Anna S. Saburova, ^{1*} Igor V. Chilingarian, ^{2,1} Ivan Yu. Katkov, ¹ Oleg V. Egorov, ^{1,5} Anastasia V. Kasparova, ¹ Sergey A. Khoperskov, ^{3,4} Roman I. Uklein, ⁵ Olga V. Vozyakova ¹

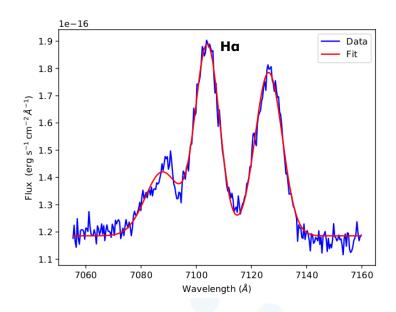


A new spectroscopic study of Malin 1

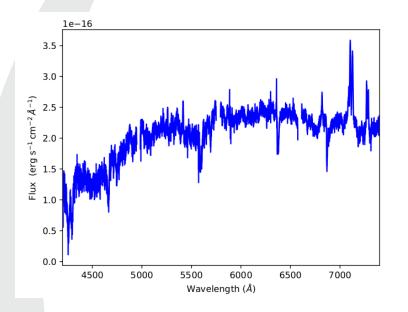
Junais et al. (In prep.)

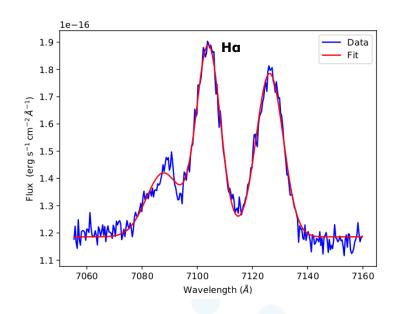
Longslit spectra from Magellan – IMACS



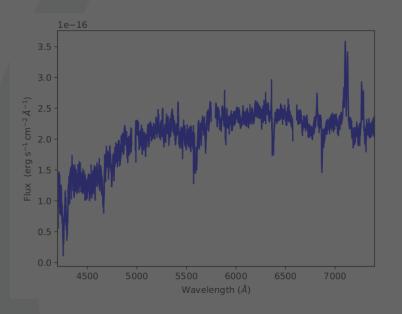


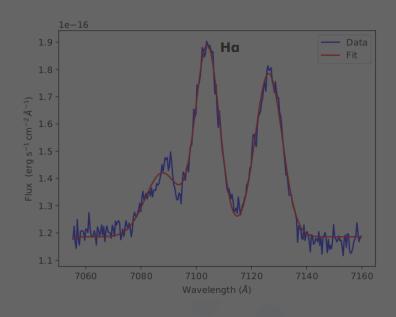
- Similar kind of spectrum extracted for 12 different regions of Malin 1
- Focussed on the $H\alpha$ emission line => strongest of all
- Measured quantities :
 - Wavelength shift
 - Line Flux





- Similar kind of spectrum extracted for 12 different regions of Malin 1
- Focussed on the $H\alpha$ emission line => strongest of all
- Measured quantities :

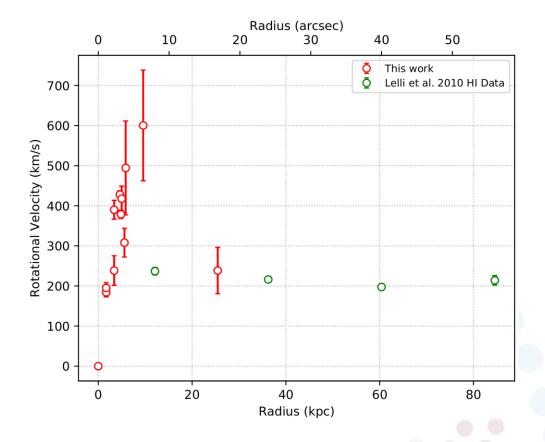




- Similar kind of spectrum extracted for 12 different regions of Malin 1
- Focussed on the $H\alpha$ emission line => strongest of all
- Measured quantities :

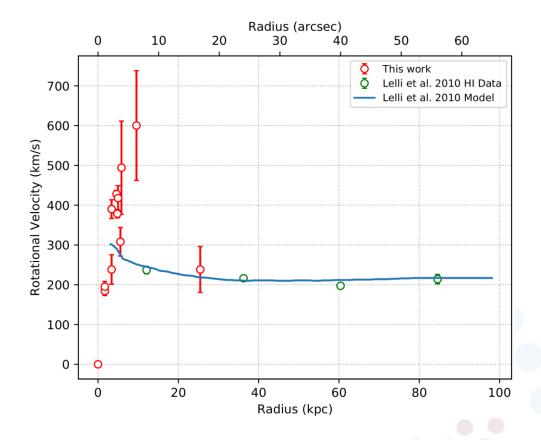
• Wavelength shift ————— Rotational Velocity

• Line Flux -----> SFR



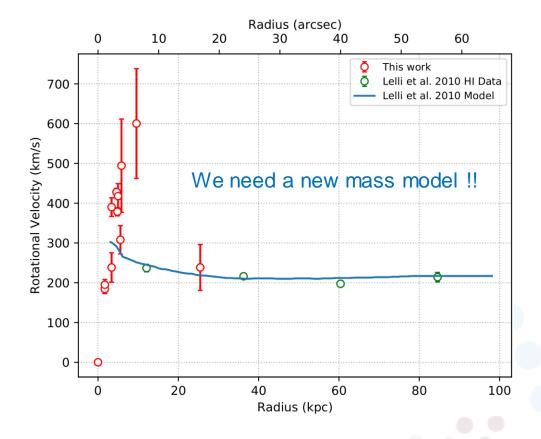
Malin 1 Hα Rotation Curve

First time to observe a steep rise in the rotation curve for Malin 1 (inside ~10 kpc)



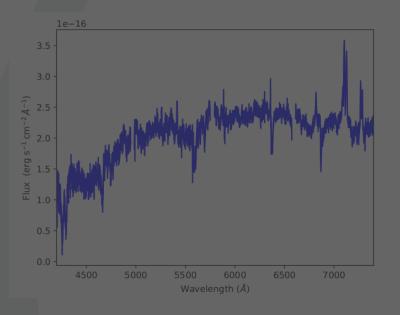
Malin 1 Hα Rotation Curve

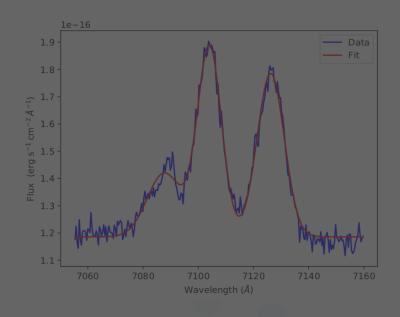
- First time to observe a steep rise in the rotation curve for Malin 1 (inside ~10 kpc)
- Existing model for Malin 1 is inconsistent for the inner regions



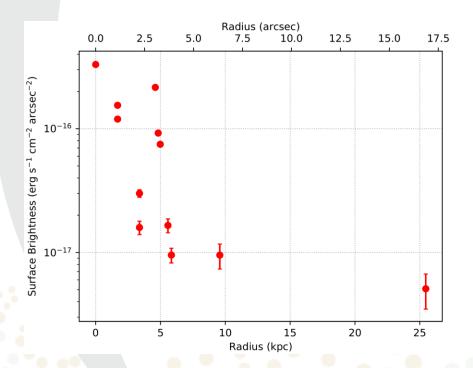
Malin 1 Hα Rotation Curve

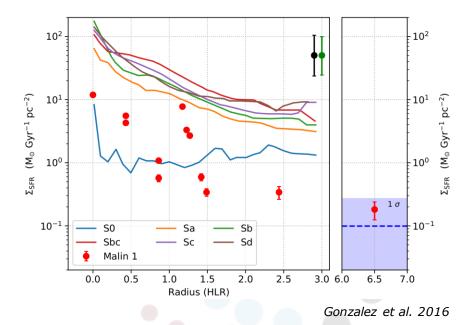
- First time to observe a steep rise in the rotation curve for Malin 1 (inside ~10 kpc)
- Existing model for Malin 1 is inconsistent for the inner regions





- Similar kind of spectrum extracted for 12 different regions of Malin 1
- Focussed on the $H\alpha$ emission line => strongest of all
- Measured quantities :
 - Wavelength shift ———— Rotational Velocity
 - Line Flux



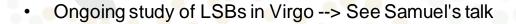


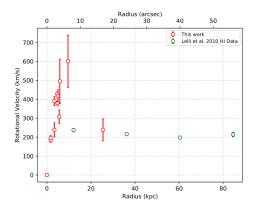
Hα Surface Brightness

- Calculated from the Hα line flux
- Decrease in surface brightness with radius
- Estimate of the local SFR

Inner regions of Malin 1:

intermediate between **SO** and **Sa** type




Summary

- Major result : Inner rise of Malin 1 rotation curve
- Surface Brightness --> first SFR order of magnitude estimate for Malin 1 using Hα

- Similar study could be extended to other LSBs & XUVs in a broader context with Malin 1 as a prototype.
- Obviously, we need more data
- Submitted a target list of more giant LSBs for Magellan-IMACS observation
- UVIT proposal for Malin 1
- Obtained a LAM grant to buy a new narrow-band Hα filter at the redshift of Malin 1

Rotation curve for Malin 1

Name	RA (deg)	DEC (deg)	Distance (Mpc)	D ₂₅ (kpc)	Last UV Radius GALEX		Observability at Las Campanas		
					(arcsec)	(kpc)	Top Altitude	Airmass	Month
UGC 00568	13.787	-1.046	182.96	46.34	5.00	4.435	60°	1.15	September
UGC 1382	28.671	-0.143	75.23	24.00	200.0	73	60°	1.15	October
UGC 02936	60.701	1.966	50.71	34.59	57.10	14.04	60°	1.15	November
PGC 135754	159.365	2.089	304.59	48.69	24.50	36.18	60*	1.15	March
UGC 6614	174.811	17.143	91.62	35.11	125.0	55.5	45°	1.41	March
Malin 1	189.247	14.330	343.44	25.09	48.00	79.92	45°	1.41	March
PGC 45080	195.817	1.469	172.44	45.74	48.10	40.21	60°	1.15	March
NGC 7589	349.565	0.261	117.39	32.59	38.30	21.79	60°	1.15	September
PGC 71626	352.635	-2.463	132.29	53.08	84.40	54.10	60°	1.15	Septembe

New GLSB target list for IMACS-Magellan

THANK YOU

Extra slides

IMACS Specifications

IMACS Characteristics of our Observations

Imaging : f/4 Camera

Field of View : 15.4×15.4 arcmin

CCD : $8K \times 8K$ pixels (8 chips of $2K \times 4K$)

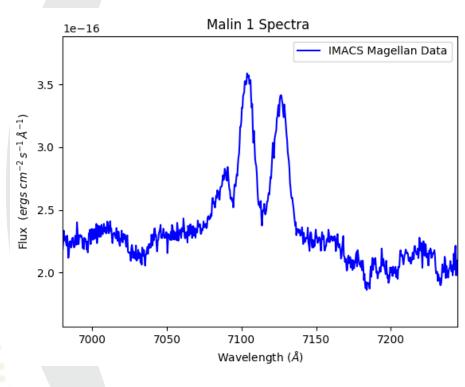
CCD Pixel Scale : 0.111"/pixel

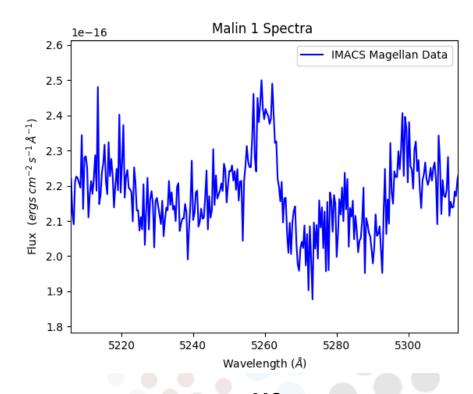
Slit width : 2.5"

Grating : 600 lines/mm

Central Wavelength : 5790 Å

FWHM Spectral Resolution : 8.5 Å

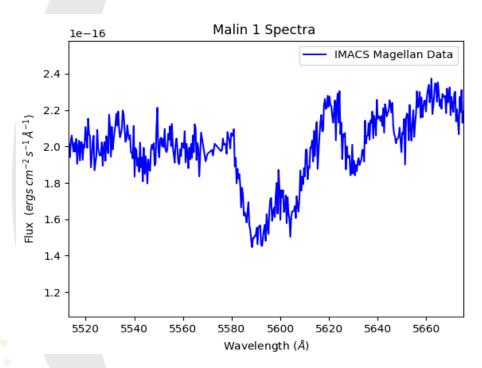


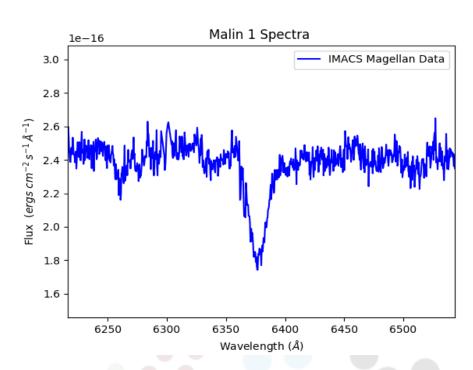


Emission Lines

Ηα

Ηβ





Absorption Lines

Mg I (5175)

Na I

Geometry

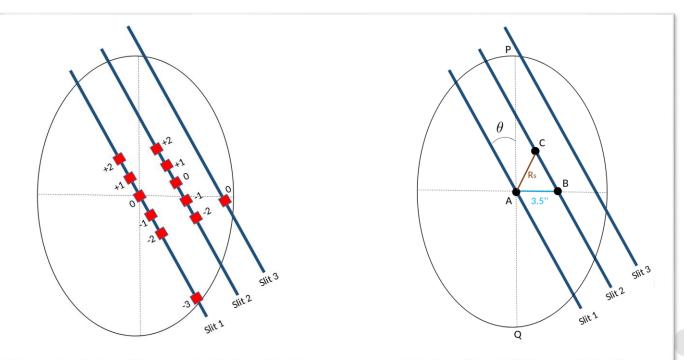
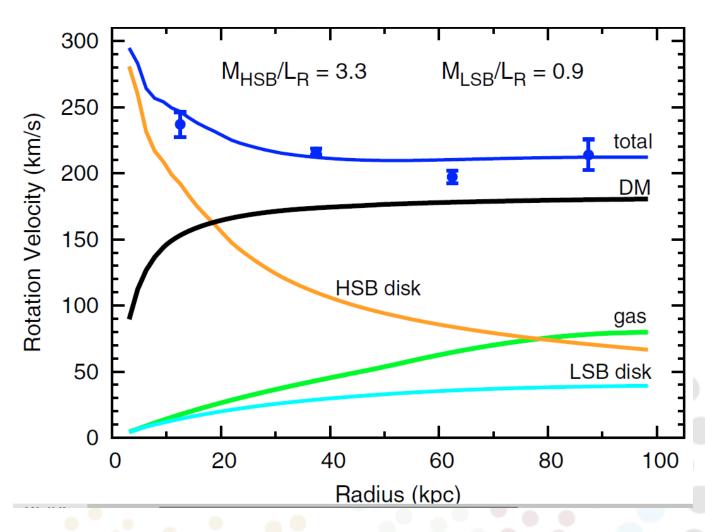
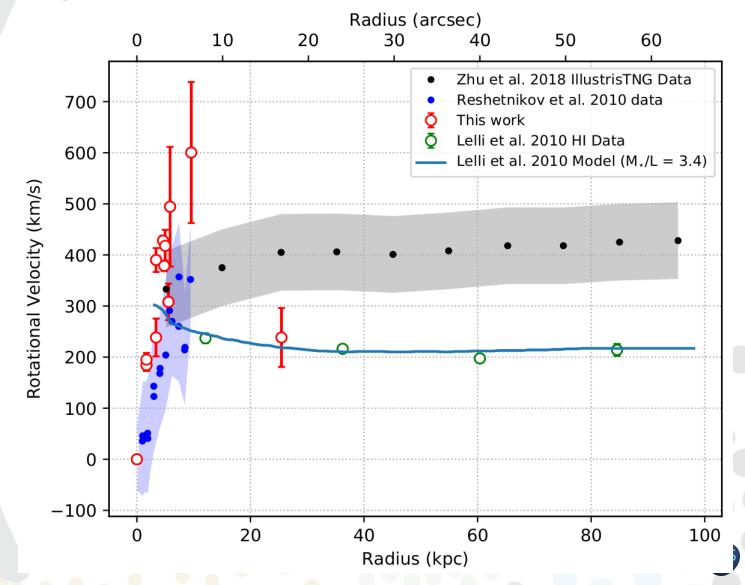
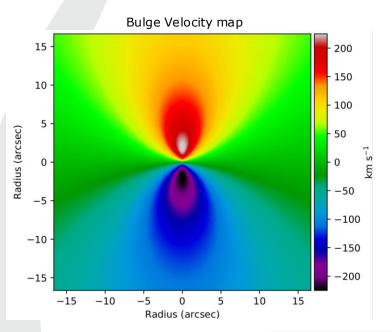


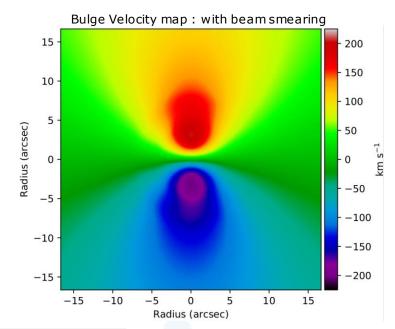
Figure 6. Left: Geometrical sketch of our galaxy and the slit positions, with the 12 regions of extraction and their aperture IDs (marked in red). The dotted lines denotes the major axis and minor axis of the galaxy (here the inclination is exaggerated for demonstration purpose). Right: Geometry to measure the radius and projection angle of an aperture marked C. All the angles here are defined in a counter-clockwise direction with respect to the upper major axis of the galaxy.

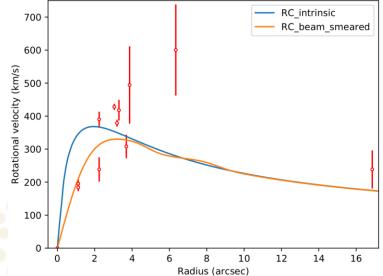


Lelli Mass Model

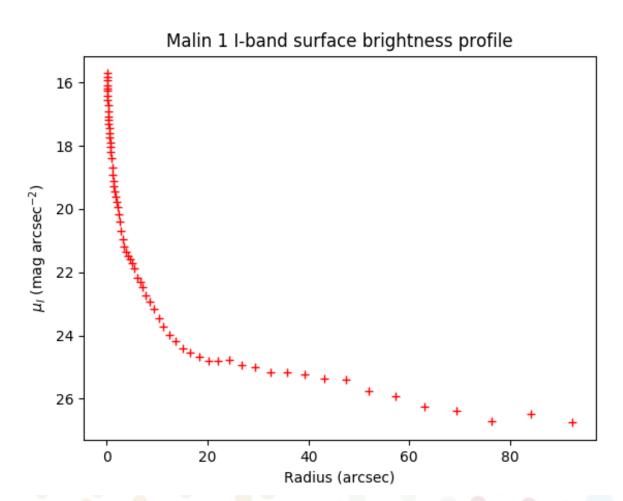



Existing Models

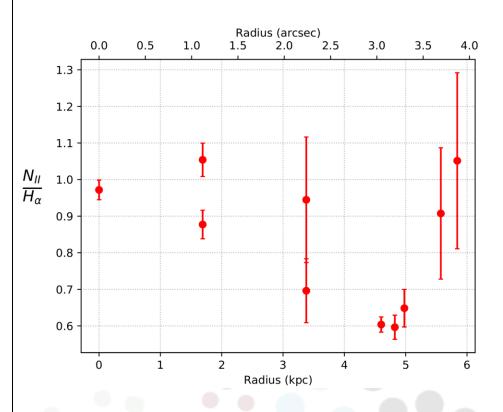




New Mass Model: Preliminary plots



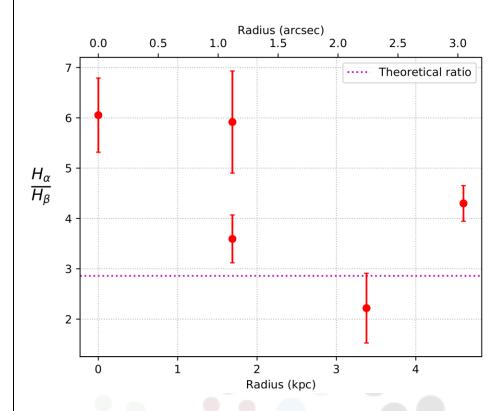
Malin 1 surface brightness profile



Data Source: Lelli et al. 2010

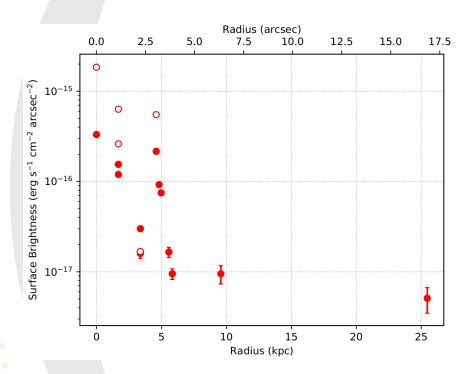
Abundance Ratio

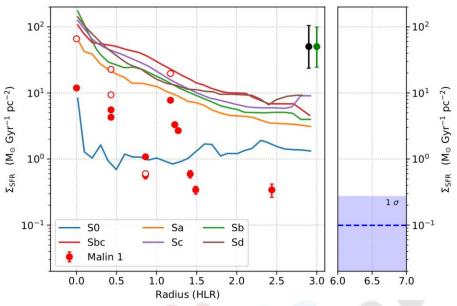
- [N II]₆₅₈₄/Hα ratio --> Abundance estimator (*Denicolo et al. 2002*)
- Observed high abundance at inner regions of Malin 1
- Could also be due to AGN activity
- Boissier '16 model for Malin 1 predicts low abundance – only for outer disk
- Need to make model for inner regions



Dust Attenuation

- $H\alpha/H\beta$ ratio --> Highly sensible to dust attenuation
- Observed high Hα/Hβ ratio at inner regions of Malin 1
- Could indicate high dust content
- Only few data points cannot conclude much
- Possible errors calibration, underlying absorption





SB – SFR Corrected using Balmer Ratio

