SF2A 2019

Detection of Intra-Cluster Diffuse Light: presenting DAWIS

PhD Student: Amaël Ellien

Supervisors: Florence Durret, Christophe Adami (LAM)

mu(V) < 23.7

What is the Intra-Cluster Light (ICL)?

 \rightarrow Galaxy clusters diffuse component in the optical wavelenghts (not X-rays or Radio !)

- → Detected for the first time by Zwicky in 1951
- \rightarrow Very low surface brightness (μ >26.5 mag.arc⁻²; Mihos et al. 2005)
- \rightarrow Composed of stars that are not related to any galaxy in particular
 - → Embedded in the galaxy cluster gravitational potential
- \rightarrow Form a smooth halo around the galaxy cluster center (\sim few hundred kpc)

Scenario of ICL formation (The common one)

→ Stars stripped away from their home galaxy through gravitational interactions (mergers, tidal stripping); Merritt (1984)

- → These stars are then mixed into the global gravitational potential of the galaxy cluster
- → Detecting and characterizing the ICL should give important information about the accretion history of the galaxy cluster

The theoretical point of vue (Cosmological Hydro and N-body simulations)

- \rightarrow ICL produced by the more massive galaxies (10¹⁰⁻¹¹ M_{\odot}; Contini et al., 2014)
- → Metallicity of ICL is similar to the metallicity of cluster's galaxies (Contini et al., 2019)
 - \rightarrow ICL forms at z<1-2 (Murante et al., 2007)
 - → Massive galaxy clusters have more ICL (Murante et al., 2004)
 - \rightarrow Fraction of ICL:

$$f_{ICL} = \frac{F_{ICL}}{F_{GAL} + F_{ICL}}$$

At z=0, the ICL emits around 10 to 40% of the total light of a galaxy cluster

Multiple steps in the formation of Intra-Cluster Light (ICL)

 \rightarrow filamentary state

Rudick et al, 2009, 2011

 \rightarrow relaxed state

→ Another conclusion of those studies : surface brightness thresholding is not very good to detect ICL !

Presenting DAWIS (Detection Algorithm using Wavelets fot Intra-cluster light Surveys)

- \rightarrow Algorithm based on the wavelet theory a first version was created by Da Rocha et al., 2005
- \rightarrow Creation of a new version which is highly parallelized with most of the numerical work coded in Fortran and the rest in Python for flexibility
- \rightarrow Very efficient to detect and model sources (galaxies) in astronomical images up to low surface brightness scales without the need for prior information
 - → Subtract sources from image
 - → ICL in residuals (hopefully)

DAWIS in a nutshell (1)

1 – Mallat's "à trous" algorithm

Image is smoothed

Noise level decreases

2 – Interscale trees

Thresholding \rightarrow significant pixels grouped in regions

$$\Phi(x) \ge k \sigma_j$$

 $\begin{array}{c} \text{Linking} \, \to \, \text{the regions linked into interscale} \\ \text{trees} \end{array}$

DAWIS in a nutshell (2)

- 3 Conjugate gradient algorithm (Stark et al., 1998)
- → Each object in an image is reconstructed separately and then the reconstructions are concatenated in a single reconstructed image
- \rightarrow Tests on simulated galaxies :

Without noise With noise

The case of MACSJ0717 in the Hubble Frontier Fields Survey (1)

Durret+ 2016

MACSJ0717: large galaxy cluster at redshift ~0.5 with a detected cosmic filament to the south-east.

Fig. 5. Same at Fig. 3 for MACS J0717+3745 (z = 0.5458). The magenta points correspond to the galaxies with spectroscopic redshifts in the 0.53 < z < 0.565 interval.

Hubble Frontier Fields: Very deep Hubble photometric survey in 6 bands (RGB image on the left).

The case of MACSJ0717 in the Hubble Frontier Fields Survey (2)

HFF	F435W	F606W	F814W	F105W
3σ _{bkg} (mag.arcsec ⁻²)	29.89	29.96	30.03	29.97
$5\sigma_{\rm bkg} ({\rm mag.arcsec^{-2}})$	29.34	29.41	29.50	29.41
Radius (kpc)	275.3	562.5	421.5	FoV
$f_{\rm ICL}(\%)$	$2.48^{+0.19}_{-0.20}$	$24.43^{+3.37}_{-1.71}$	$16.10^{+1.03}_{-1.03}$	13.22+1.76

$$f_{\rm ICL} = \frac{F_{\rm ICL}}{F_{\rm Gal} + F_{\rm ICL}}$$

The case of MACSJ0717's filament

Jauzac+ 2012

Other HST mosaic for the filament (less deep).

No large diffuse contribution (what was expected)

 \rightarrow looking for tidal streams

Rudick et al, 2009

The complex case of MACS J0717.5+3745 and its extended filament: intra-cluster light, galaxy luminosity function, and galaxy morphology

A. Ellien¹, F. Durret¹, C. Adami², N. Martinet², and C. Lobo^{3,4}

A&A 2019 in minor revision

The case of MACSJ0717's filament

We can find strong tidal streams in the region demarcated by the WL (cyan) contours

→ Galaxy group ? (Galaxy Luminosity Function agrees)

What's next?

Elixir-LSB (J-C. Cuillandre)

Is it working?

→ The reconstruction of an object does not have a single solution (some objects might be badly reconstructed)

→ There can be different usages of such algorithm (deblending, separating source's components, etc)

The case of MACSJ0717 in the Hubble Frontier Fields Survey (3)

