A new method for measuring relative abundances in the solar corona

SF2A 2019

Natalia ZAMBRANA PRADO

Éric Buchlin

Institut d'Astrophysique Spatiale, Orsay, France

The FIP effect

Fractionation of the coronal composition as a function of the First Ionization Potential.

« FIP bias » :
$$f_X = rac{Ab_X^{\,corona}}{Ab_X^{\,photosphere}}$$

- ★ FIP : First Ionization Potential
- ★ Ab_x^{region} : elemental abundance relative to hydrogen in a given region of the solar atmosphere

« FIP bias » frozen in the corona

The FIP effect can allow us to trace back the source of heliospheric plasma

Measuring relative abundances

In the coronal approximation, the radiance of the transition line from level i to j of ion X^{+m} is :

Measuring relative abundances

$$I_{X,\,ij}=f_X^{\,bias}A_X^{
m ph}\langle C_{X,\,ij},{
m DEM}
angle$$

$$rac{f_{X_{
m LF}}^{\ bias}}{f_{X_{
m HF}}^{\ bias}} = rac{I_{
m LF}}{I_{
m HF}} egin{pmatrix} A_{X_{
m LF}}^{
m ph} \ A_{X_{
m HF}}^{
m ph} \ C_{
m LF}, \ DEM
angle \end{pmatrix}^{-1}$$

Two Line Ratio (2LR)

Fast and simple Easy to automate Inaccurate unless contribution functions match perfectly

Following DEM inversion

Inverse problem difficult to constrain Complicated to automate More accurate

What we have

Spectroscopic observations

The game plan

How

A new FIP bias measuring method with:

- ★ No DEM Inversion
- ★ Optimized linear combinations of spectral lines

What we want to do

- ★ Create accurate FIP bias maps systematically and semi-automatically
- ★ Re-analyze past observations
- ★ Design observations : which lines should we use ?

The Linear Combination Ratio (LCR) method

Spectral lines of **low FIP** elements

$$\mathscr{I}_{\mathrm{LF}} \equiv \sum_{i \in (\mathrm{LF})} lpha_i \; rac{I_i}{A_i^{\mathrm{ph}}} \ \mathscr{C}_{\mathrm{LF}}(T) \equiv \sum_{i \in (\mathrm{LF})} lpha_i \; C_i(T)$$

Spectral lines of high FIP elements

$$\mathscr{I}_{
m HF}\equiv {\displaystyle\sum_{i\in({
m HF})}}eta_i \; {\displaystyle rac{I_i}{A_i^{
m ph}}}$$

$$\mathscr{C}_{
m HF}(T)\equiv \sum_{i\in({
m HF})}eta_i\,\,C_i(T)$$

The relative FIP bias is
$$\frac{f_{\rm LF}^{bias}}{f_{\rm HF}^{bias}} = \frac{\mathscr{I}_{\rm LF}}{\mathscr{I}_{\rm HF}} \left(\frac{\langle \mathscr{C}_{\rm LF}, {\rm DEM} \rangle}{\langle \mathscr{C}_{\rm HF}, {\rm DEM} \rangle} \right)^{-1} \approx 1$$

We minimize $\phi(\alpha, \beta) = \sqrt{\sum_{j \in ({\rm DEM}_j)_j} \left| \frac{\langle \mathscr{C}_{\rm LF}, {\rm DEM}_j \rangle}{\langle \mathscr{C}_{\rm HF}, {\rm DEM}_j \rangle} - 1 \right|^2}$ for a set of reference DEMs

7

Tests on uniform FIP bias maps

Fe xii 195.119 Angstroms

In practice : Hinode/EIS

Application of the LCR method to spectroscopic observations of a sigmoidal anemone-like Active Region inside an equatorial Coronal Hole, previously studied in Baker et al. (2013).

Following DEM inversion	Linear combinations
$f_{ m Si}$	$f_{ m Si}$ & Fe
$\overline{f_{ m S}}$	$f_{ m S}$

 Similar structures with enhanced or depleted relative FIP bias in both maps.

Data courtesy of D. Baker

Conclusions

- ★ The tests show that the LCR method performs well, and does not require prior DEM inversion.
- ★ The LCR method could be useful to re-analyze past observations that were not intended for abundance measurements.
- ★ It could help us prepare future observations.

Present and Future work

- ★ Re-analyze past EIS/Hinode observations (ISSI Team of Susanna Parenti).
- ★ Assessment of linear combinations of lines for the UV spectrometer SPICE on board Solar Orbiter to help connect remote and in-situ measurements from SWA/HIS.
- ★ Could become a SPICE level 3 data product.

Thank you for listening

