

Mars ionosphere variability

Beatriz Sánchez-Cano

Mark Lester, Pierre-Louis Blelly, Olivier Witasse, and Hermann Opgenoorth

SF2A, Nice, 16 May 2019

Mars' ionosphere

Internal sources of variability

External sources of variability

Conclusions

Credits: MEX VMC image

bscmdr1@le.ac.uk

The Mars' plasma environment

Lillis et al., 2015

Mars' ionosphere

5

UNIVERSITY OF LEICESTER

Internal sources of variability

Courtesy of MSSS/JPL-CALTECH/NASA

Atmospheric cycles

Atmospheric cycles, like the CO_2 cycle, change the mass of the Martian atmosphere by 30% each year

Mass loading of upper atmosphere

ESA web story, Sanchez-Cano et al., 2018a b

TEC annual variation

UNIVERSITY OF LEICESTER

TEC variation

UNIVERSITY OF

EICEST

Density at 140 km

> Surface pressure

Solar irradiance

Sun-Mars distance

Ionosphere-thermosphere simulation

We have performed a simulation with the IPIM model for SZA=85°, local time 18h, and keeping the solar flux constant

Ionosphere-thermosphere simulation

We have performed a simulation with the IPIM model for SZA=85°, local time 18h, and keeping the solar flux constant

UNIVERSITY OF LEICESTER

Is the TEC a good tracer for atmospheric cycles?

Mars Express - SPICAM instrument have shown that while the polar cap sublimation is occurring, oxygen species below 50 km have a cyclical annual behaviour that agrees pretty well with our ionospheric observations and modelling (both temporal and location-wise).

Adapted from Montmessin et al., 2017

External sources of variability

Courtesy of NASA/GSFC

Space weather context

On September 10th, 2017 the Sun emitted a X8.2 flare in Mars' direction, followed few hours after by a large SEP, and 3 days later for a powerful coronal mass ejection.

MARSIS radio blackouts

The SEP precipitation in Mars' atmosphere coincided with an extended blackout in HF signals that lasted for **~10 days**, when Mars Express was sounding the deep nightside. Potential cause is a low ionospheric absorption layer formed by SEP precipitation.

Sanchez-Cano et al., 2019

bscmdr1@le.ac.uk

SHARAD radio blackouts

EICESTER

The SHARAD radar on board the MRO mission also experienced a blackout operating at a central frequency of 20 MHz that lasted ~3 days. This is most probably because of the low absorption layers on the ionosphere are frequency-dependent:

$$A(db/m) = 46.1 N_e(h) \frac{\nu(h)}{(2 \pi f)^2 + \nu^2(h)}$$

Radio blackouts

Electron penetration depth

We perform a simulation with the IPIM model considering as input the energy spectrum of the SEP electrons as recorded by MAVEN.

Ionospheric layer

We find that the SEP electron precipitation creates a main O_2^+ layer formed at ~90 km, which bottom part is at ~60km and it is mainly formed by NO⁺.

The peak magnitude is ~10¹⁰ m⁻³, which is of the same order of the dayside ionosphere secondary peak which is typically found at 110 km.

Ionospheric absorption

$$A(db/m) = 46.1 N_e(h) \frac{\nu(h)}{(2 \pi f)^2 + \nu^2(h)}$$

 $v (e^- - CO_2) \propto n(CO_2) \& T_e$

Ionospheric absorption

$$A(db/m) = 46.1 \, \frac{\nu(h)}{(2 \, \pi \, f)^2 + \, \nu^2(h)}$$

 $\nu (e^- - CO_2) \propto n(CO_2) \& T_e$

Conclusions

Credits: ESA/DLR/FU Berlin (G. Neukum)

- Mars' ionosphere behaviour is strongly influenced by internal and external processes, even more than Earth's ionosphere.
- TEC is a good proxy for systematic assessments of the thermosphere-ionosphere coupling, and track the evolution of low atmosphere cycles.
- For the first time, we can conclude that high energetic electron precipitation (>50 keV) is the responsible for the low-altitude absorption layers at Mars.

Thank you very much for your attention!!

bscmdr1@leicester.ac.uk

Credits: ESA/DLR/FU Berlin (G. Neukum)