





## FROM THE STAR TO THE TRANSITING EXOPLANET: CHARACTERISATION OF 55 CNC AND HD219134

Roxanne Ligi (INAF - Osservatorio Astronomico di Brera) Caroline Dorn (University of Zurich) Aurélien Crida (Observatoire de la Côte d'Azur) Francesco Borsa (INAF - Osservatorio Astronomico di Brera)

Nice, 4ème jour



Ligi

#### Thousands of exoplanet discoveries..



|  |  |  |  | 2 |  |  |  |  |  |  |  |  | SF | 2A | 20 | 19 |
|--|--|--|--|---|--|--|--|--|--|--|--|--|----|----|----|----|
|--|--|--|--|---|--|--|--|--|--|--|--|--|----|----|----|----|



Ligi

## Thousands of exoplanet discoveries..

3





$$\frac{\left(m_p \sin i\right)^3}{\left(M_{\star} + m_p\right)^2} = \frac{P}{2\pi G} K^3 (1-e)^{3/2}$$



 $\rightarrow$   $M_p$  and  $R_p$  dependent on  $R \star$  and  $M \star$ 

SF

2A

20



lLigi

## Thousands of exoplanet discoveries...

Δ



 $\frac{\left(m_p \sin i\right)^3}{\left(M_{\star} + m_p\right)^2} = \frac{P}{2\pi G} K^3 (1-e)^{3/2}$ 

Internal composition



 $\rightarrow$  Mp and Rp dependent on R  $\bigstar$  and M  $\bigstar$ 

SF

2A

20



R. Ligi



# Stellar radius and effective temperature







R\*

а

T =

 $\frac{2R_*}{(2\pi a/P)}$ 

 $\lim_{n \to 0} e \rightarrow 0$ 

# Stellar density from transit light

curve







 $P/T^3 = (\pi^2 G/3) \rho_{\star}$ 

|    |      | <br> | <br> | <br> | <br> | <br> |   | <br> | <br> | <br> | <br> |    |    |    |    |
|----|------|------|------|------|------|------|---|------|------|------|------|----|----|----|----|
| R. | Ligi |      |      |      |      |      | 7 |      |      |      |      | SF | 2A | 20 | 19 |



# Stellar density from transit light

curve



8

SF

2A

20

| R.  | l iai | ſ |
|-----|-------|---|
| Τι. | LIYI  |   |





Ligi

The star: 55 Cnc





10

Crida, Ligi et al. 2018 a,b Ligi et al. 2016

SF

2A

20



## The transiting planet: 55 Cnc e

11

 $\frac{PDF}{R_p} = 1.947 \pm 0.038 \ R_{\oplus}$  $M_p = 8.59 \pm 0.43 \ M_{\oplus}$ 

<u>Joint PDF</u>

 $\rho_p = 1.164 \pm 0.062 \rho_{\oplus}$ 

 $= 6421 \pm 342 \text{ kg.m}^3$ 

R.

Ligi

Correlation  $(M_p - R_p) = 0.54$ 



Crida, Ligi et al. 2018 a,b Dorn et al. 2017

SF 2A 20 19



Ligi

## The transiting planet: 55 Cnc e

12

Atmosphere thickness = **3% of R**<sub>p</sub>

→ not a good target for transmission spectroscopy

 $\rightarrow$  chemistry of the interior non necessarily carbon-rich



Crida, Ligi et al. 2018 a,b Dorn et al. 2017

SF 2A 20



Vogt et al. 2015

| R. | Ligi |  |  |      |  |      | 13 |      |      |  |  | SF | 2A | 20 | 19 |
|----|------|--|--|------|--|------|----|------|------|--|--|----|----|----|----|
|    |      |  |  | <br> |  | <br> |    | <br> | <br> |  |  |    |    |    |    |



Ligi

## The star: HD219134





14

Ligi et al., in prep.

SF

2A

20



|                                          | PLANEI D                      | PLANETC                     |  |
|------------------------------------------|-------------------------------|-----------------------------|--|
| Radius                                   | 1.50 ± 0.06 R <sub>⊕</sub>    | 1.41 ± 0.05 R <sub>⊕</sub>  |  |
| Mass                                     | 4.27 ± 0.34 M <sub>⊕</sub>    | 3.96 ± 0.34 M <sub>⊕</sub>  |  |
| Density                                  | $1.27 \pm 0.16 \rho_{\oplus}$ | 1.41 ± 0.17 $\rho_{\oplus}$ |  |
| Corr. (M <sub>p</sub> - R <sub>p</sub> ) | 0.22                          | 0.23                        |  |

15

Ligi et al., in prep.

19

R. Ligi





Ligi

### The two transting planets: HD219134 b & c

17



Ligi et al.,

in prep.

20

19

SF

2A

Three hypothesis:

- Different volatile content
- Different rock composition
- Different state of rock





### The two transting planets: HD219134 b & c



Three hypothesis:

- Different volatile content
- Different rock composition
- Different state of rock

One could be molten

N-body simulations



Ligi et al., in prep.

19

R. Ligi

18

SF 2A 20



## **Comparison with models**





19

Ligi et al., in prep.

20

19

R. Ligi

SF 2A



HD218

- Stars to study exoplanets (M<sub>p</sub>, R<sub>p</sub>)
- Exoplanets to study stars  $(M_{\star}, R_{\star}, \rho_{\star})$ •





| ſ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |                                                                                                                 | 21 |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-----------------------------------------------------------------------------------------------------------------|----|--|
|   | the second s |  | the second se |    |  |

Ligi







t2



