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Thousands of exoplanet discoveries…
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Basics of interferometry

Mode 3T

Contrast of fringes (V2) 
= TF of the surface brightness distribution of 
the star 
 
Directly linked to the stellar angular diameter

θUD = 1 mas

θUD = 0.5 mas

θUD = 2 mas

Uniform disk: 

with
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Stellar radius and effective  
temperature
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HD219134 
Ligi et al., in prep.

Ligi et al.: Radii, masses, and ages of 18 bright stars using interferometry

Fixed parameters Fitted parameters Calculated parameters
HD AV [Fe/H] log(g) Te↵ ✓SED Fbol Fbol

[cm · s2] [K] [mas] (AV = 0)
3651 0.060 0.1 4.4 ± 0.17 5297 ± 27 0.715 ± 0.014 13.409 ± 0.236 13.163 ± 0.169
9826 0.185 0.1 4.2 ± 0.14 6494 ± 39 1.073 ± 0.016 68.200 ± 2.310 58.448 ± 0.493
19994 0.090 0.2 4.2 ± 0.14 6039 ± 26 0.767 ± 0.011 25.798 ± 0.654 24.980 ± 0.291
75732 0.0075 0.3 4.4 ± 0.12 5219 ± 26 0.709 ± 0.012 12.435 ± 0.168 12.399 ± 0.168
167042 0.103 -0.1 3.2 ± 0.10 4774 ± 33 0.958 ± 0.028 15.886 ± 0.551 12.927 ± 0.429
170693 0.052 -0.5 2.1 ± 0.54 4460 ± 24 1.933 ± 0.023 49.180 ± 0.600 49.723 ± 0.102
173416 0.047 -0.2 2.5 ± 0.10 4735 ± 23 0.917 ± 0.013 13.179 ± 0.265 13.733 ± 0.148
185395 0.328 0.0 4.3 ± 0.15 7181 ± 28 0.775 ± 0.010 49.400 ± 0.460 40.372 ± 0.403
190360 0.044 0.2 4.3 ± 0.09 5577 ± 26 0.669 ± 0.011 14.405 ± 0.195 13.987 ± 0.213
217014 0.078 0.2 4.3 ± 0.11 5804 ± 27 0.689 ± 0.011 17.965 ± 0.238 16.939 ± 0.241
221345 0.046 -0.3 2.4 ± 0.29 4692 ± 25 1.359 ± 0.023 27.983 ± 0.447 27.055 ± 0.418
1367 0.588 0.0 3.0 ± 0.10 5488 ± 23 0.725 ± 0.009 15.959 ± 0.432 9.750 ± 0.060
1671 0.473 -0.1 3.7 ± 0.10 7047 ± 27 0.619 ± 0.007 31.473 ± 0.259 21.401 ± 0.185
154633 0.046 -0.1 3.0 ± 0.10 4934 ± 24 0.788 ± 0.010 12.243 ± 0.211 11.937 ± 0.087
161178 0.408 -0.2 2.4 ± 0.25 5158 ± 26 0.885 ± 0.018 19.799 ± 0.343 15.748 ± 0.078
168151 0.129 -0.3 4.1 ± 0.50 6563 ± 38 0.679 ± 0.016 28.519 ± 0.674 25.442 ± 0.625
209369 0.116 -0.2 3.8 ± 0.10 6447 ± 41 0.682 ± 0.017 26.737 ± 0.686 24.166 ± 0.560
218560 0.059 0 1.5 ± 0.10 4631 ± 24 0.929 ± 0.014 13.375 ± 0.138 12.800 ± 0.134

Table 4: Fixed input parameters to determine the bolometric flux. Fbol is expressed in 108 erg · s�1· cm�2, and the error adopted in
the rest of the study on [Fe/H] is 0.1 dex. We adopt a minimum of 0.1 dex for the error in log(g) (see Sect. 3.1).

HD ✓UD ± �✓UD µ� ✓LD ± �✓LD(%) �2
red

3651 0.687 ± 0.007 0.537 0.722 ± 0.007 (0.97) 0.97
9826 1.119 ± 0.026 0.425 1.161 ± 0.027 (2.34) 6.95
19994 0.731 ± 0.010 0.448 0.761 ± 0.011 (1.41) 0.67
75732 0.687 ± 0.011 0.561 0.724 ± 0.012 (1.64) 0.36
167042 0.998 ± 0.013 0.616 1.056 ± 0.014 (1.28) 0.30
170693 1.965 ± 0.009 0.634 2.097 ± 0.009 (0.41) 0.20
173416 0.937 ± 0.033 0.608 0.995 ± 0.034 (3.45) 0.59
185395 0.726 ± 0.007 0.355 0.749 ± 0.008 (1.01) 8.47
190360 0.596 ± 0.006 0.480 0.622 ± 0.007 (1.08) 1.00
217014 0.624 ± 0.013 0.458 0.650 ± 0.014 (2.14) 2.27
221345 1.404 ± 0.029 0.614 1.489 ± 0.032 (2.16) 2.73
1367 0.719 ± 0.013 0.505 0.754 ± 0.014 (1.84) 0.44
1671 0.582 ± 0.006 0.359 0.600 ± 0.006 (0.92) 0.42
154633 0.763 ± 0.011 0.569 0.804 ± 0.012 (1.44) 0.33
161178 0.897 ± 0.040 0.545 0.944 ± 0.043 (4.50) 1.89
168151 0.642 ± 0.014 0.386 0.664 ± 0.015 (2.20) 0.61
209369 0.601 ± 0.017 0.380 0.621 ± 0.018 (2.85) 1.72
218560 0.875 ± 0.020 0.600 0.927 ± 0.022 (2.38) 0.64

Table 5: Angular diameters of our targets (in mas). Errors in %
are given in parenthesis (see Sect. 3.2).

in [Fe/H]. Since we observed around 720 nm, we had to consider
both R and I filters (in the Johnson-Cousin system).

We first computed linear interpolations over the coe�cients
corresponding to [Fe/H] and log(g) surrounding the stellar pa-
rameters for each filter R and I and each temperature surround-
ing the initial photometric temperature (determined from Fbol)
by ±250 K. (We took the closest values to our stars available
on the tables.) Then, we averaged the resulting LD coe�cients
on the filters to have one coe�cient per temperature. Finally, we
computed linear interpolations until the derived ✓LD calculated
with the LD coe�cient converge with the values of Te↵,? and
Fbol. The final interferometric parameters are given in Table 5.
We used the final LD coe�cient to estimate the final ✓LD using
the LITpro software. Then, the final Te↵,? is directly derived
from the LD diameter and Fbol :

Te↵,? =

0
BBBB@

4 ⇥ Fbol

�SB✓2LD

1
CCCCA

0.25

, (4)

where �SB is the Stefan-Boltzmann constant.
The stellar radius is obtained by combining the LD diame-

ter and the distance d (from Hipparcos parallaxes, van Leeuwen
2007) :

R?[R�] =
✓LD[mas] ⇥ d[pc]

9.305
. (5)

To determine the errors on Te↵,? and R?, we consider that the
parameters on the righthand side of each equation are indepen-
dent random variables with Gaussian probability density func-
tions. For any quantity X, the uncertainty on its estimate is noted
�X , and the relative uncertainty �X/X is noted �̃X . Then, the
standard deviation of each parameter that we want to estimate
is given analytically to first order by a classical propagation of
errors, following the formula :

�̃T e↵,? =

q
((1/2) ⇥ �̃✓LD)2 + ((1/4) ⇥ �̃F bol)2

�̃R? =
q
�̃✓2LD + �̃

2
d ,

(6)

where �✓LD, �Fbol, and �d are the errors on the LD diameter,
bolometrix flux, and distance, respectively. Then, we calculate
the stellar luminosity L? by combining the bolometric flux and
the distance :

L? = 4⇡d2Fbol , (7)

and its error
�̃L? =

q
(2 ⇥ �̃d)2 + �̃F

2
bol . (8)

Finally, we calculate the gravitational mass Mgrav,? using log(g)
and R?

Mgrav,? =
R2
? ⇥ 10log(g)

G
(9)

and its error

�̃Mgrav,? =

r
(2 ⇥ �̃R?)2 +

⇣
�log(g) ⇥ ln(10)

⌘2
. (10)

The parameters and their errors are shown in Table 6.
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Stellar density from transit light  
curve

P/T3 = (π2G/3) ρ★
stellar parameters. In Section 2, we describe our host star target
selection and detail our data analysis, including data processing,
detrending, and Markov chain Monte Carlo (MCMC) approach to
fitting the transit model. In Section 3, we present the results of this
analysis, including the full posterior distributions of the stellar
density and LDCs. We specifically discuss the types of planet–star
systems for which this method succeeds in producing high-
precision constraints on stellar density in Section 3.3.1. We
conclude and highlight this approach’s potential to aid in the
characterization of singly transiting planets discovered by the
upcoming NASA TESS mission in Section 4.

2. Methods

2.1. How to Measure
*
r from a Transit Light Curve

Seager & Mallén-Ornelas (2003) demonstrated that the mean
stellar density ρ* can be measured from a transit light curve
without any direct measurement of the stellar mass M* or
radius R* as a result of Kepler’s third law. Figure 1 offers some
intuition about this procedure in the case of a circular orbit, and
we sketch the analytic derivation of the circular-orbit case here.

We begin with Kepler’s third law,

P a
G M M

a
GM4

, 1
p

2

2

3 3

* *p
=

+
�

( )
( )

where the right-hand side assumes that M Mp *� . Dividing
and multiplying the right-hand side of this equation by the
stellar volume, R4

3
3
*p , we obtain

P a R
G4

3
4

. 2
2

2

3
*

*
p p r

=
( ) ( )

Rearrangement yields

a R
GP

3
. 3

3

2*
*r

p
=

( ) ( )

Therefore, to measure ρ*, we need only know the orbital
period P and normalized semimajor axis a R* of a planet
orbiting the star. (In particular, neither M* nor R* is necessary

to obtain ρ*.) Both P and a R* are directly measurable from
the transit light curve: P is the interval between successive
transits, and a R* can be derived from the transit duration.
In the case of a circular orbit, a R* follows trivially from the
transit duration and P (see Figure 1):

T
R
a P

2
2

. 4*
p

=
( )

( )

Rearrangement of this equation yields the normalized
semimajor axis a R*:

a
R

P
T

. 5
* p
= ( )

However, in general, the eccentricity e of the transiting planet’s
orbit also influences the transit duration T. The exact solution for T
in the case of an eccentric orbit involves solving a quartic equation
in fcos , where f is the true anomaly (see Kipping 2008, 2010 for
details). However, Kipping (2010) found the following approx-
imate expression for T under the simplifying assumption that the
planet–star separation does not change during the transit:

T
P

e

a R i

a R i1
arcsin

1 cos

sin
, 6c c

c

2

2

2 2 2
*

*

� �
�p -

-
�

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )
( )

( )

where ñc is the separation between the planet and star at mid-
transit in units of stellar radii.
Since e and ρ* both influence the transit duration T, it is

necessary to have a precise constraint on e in order to derive a
precise constraint on ρ* (Kipping 2010). For some planets,
such as planets with observed secondary eclipses, e is directly
measurable (e.g., Knutson et al. 2007a); for others, such as
planets on very short-period orbits that are expected to tidally
circularize quickly or planets in compact multi-planet systems,
dynamical stability constrains e to low values. For each of these
categories of planet—secondary-eclipse planets, tidally circu-
larized planets, and multi-planet systems—we may express the
existing eccentricity constraint as a Bayesian prior on e. In
Sections 2.2.1–2.2.3, we describe how we select a sample of
Kepler objects of interest (KOIs) belonging to each category
for transit modeling.
We note that, in principle, ρ* could also be measured from

the transits of planets with radial velocity–measured eccentri-
cities. However, analyzing such planets requires jointly fitting
the radial velocity curves, including accurate treatment of
stellar activity effects. This is beyond the scope of the present
study, and we defer the analysis of planets with radial velocity–
measured e to later work.
Assuming, then, that we have a strong e prior, all we must do

to measure ρ* from a transit is fit a transit model comprising 10
parameters: the transit epoch t0, the orbital period P, the impact
parameter b, the stellar density ρ*, the ratio of radii R Rp *, the
orbital eccentricity e, the argument of periastron ω, and three
coefficients of a modified nonlinear limb-darkening law
(transformed to allow for efficient sampling as described in
Kipping 2016): , ,r ha a and aq. In other words, we must explore
this 10-dimensional parameter space and find a region that
matches the Kepler transit data.
We use the transit-modeling code BATMAN (Kreidberg 2015)

to compute the light curve of a given set of 10 transit model

Figure 1. The transit duration T is equal to the stellar diameter divided by the
mean orbital velocity, which is equal to a P2p in the case of a circular orbit.
Rearrangement of the equation in the lower panel yields the normalized
semimajor axis a R*. An analogous calculation is possible for planets on
eccentric orbits (for which orbital velocity varies with phase), provided the
eccentricity is known.
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to compute the light curve of a given set of 10 transit model

Figure 1. The transit duration T is equal to the stellar diameter divided by the
mean orbital velocity, which is equal to a P2p in the case of a circular orbit.
Rearrangement of the equation in the lower panel yields the normalized
semimajor axis a R*. An analogous calculation is possible for planets on
eccentric orbits (for which orbital velocity varies with phase), provided the
eccentricity is known.
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(Maxted et al. 2015, Seager & Mallén-Ornelas 2003)
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stellar parameters. In Section 2, we describe our host star target
selection and detail our data analysis, including data processing,
detrending, and Markov chain Monte Carlo (MCMC) approach to
fitting the transit model. In Section 3, we present the results of this
analysis, including the full posterior distributions of the stellar
density and LDCs. We specifically discuss the types of planet–star
systems for which this method succeeds in producing high-
precision constraints on stellar density in Section 3.3.1. We
conclude and highlight this approach’s potential to aid in the
characterization of singly transiting planets discovered by the
upcoming NASA TESS mission in Section 4.

2. Methods

2.1. How to Measure
*
r from a Transit Light Curve

Seager & Mallén-Ornelas (2003) demonstrated that the mean
stellar density ρ* can be measured from a transit light curve
without any direct measurement of the stellar mass M* or
radius R* as a result of Kepler’s third law. Figure 1 offers some
intuition about this procedure in the case of a circular orbit, and
we sketch the analytic derivation of the circular-orbit case here.

We begin with Kepler’s third law,
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Therefore, to measure ρ*, we need only know the orbital
period P and normalized semimajor axis a R* of a planet
orbiting the star. (In particular, neither M* nor R* is necessary

to obtain ρ*.) Both P and a R* are directly measurable from
the transit light curve: P is the interval between successive
transits, and a R* can be derived from the transit duration.
In the case of a circular orbit, a R* follows trivially from the
transit duration and P (see Figure 1):
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However, in general, the eccentricity e of the transiting planet’s
orbit also influences the transit duration T. The exact solution for T
in the case of an eccentric orbit involves solving a quartic equation
in fcos , where f is the true anomaly (see Kipping 2008, 2010 for
details). However, Kipping (2010) found the following approx-
imate expression for T under the simplifying assumption that the
planet–star separation does not change during the transit:
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where ñc is the separation between the planet and star at mid-
transit in units of stellar radii.
Since e and ρ* both influence the transit duration T, it is

necessary to have a precise constraint on e in order to derive a
precise constraint on ρ* (Kipping 2010). For some planets,
such as planets with observed secondary eclipses, e is directly
measurable (e.g., Knutson et al. 2007a); for others, such as
planets on very short-period orbits that are expected to tidally
circularize quickly or planets in compact multi-planet systems,
dynamical stability constrains e to low values. For each of these
categories of planet—secondary-eclipse planets, tidally circu-
larized planets, and multi-planet systems—we may express the
existing eccentricity constraint as a Bayesian prior on e. In
Sections 2.2.1–2.2.3, we describe how we select a sample of
Kepler objects of interest (KOIs) belonging to each category
for transit modeling.
We note that, in principle, ρ* could also be measured from

the transits of planets with radial velocity–measured eccentri-
cities. However, analyzing such planets requires jointly fitting
the radial velocity curves, including accurate treatment of
stellar activity effects. This is beyond the scope of the present
study, and we defer the analysis of planets with radial velocity–
measured e to later work.
Assuming, then, that we have a strong e prior, all we must do

to measure ρ* from a transit is fit a transit model comprising 10
parameters: the transit epoch t0, the orbital period P, the impact
parameter b, the stellar density ρ*, the ratio of radii R Rp *, the
orbital eccentricity e, the argument of periastron ω, and three
coefficients of a modified nonlinear limb-darkening law
(transformed to allow for efficient sampling as described in
Kipping 2016): , ,r ha a and aq. In other words, we must explore
this 10-dimensional parameter space and find a region that
matches the Kepler transit data.
We use the transit-modeling code BATMAN (Kreidberg 2015)

to compute the light curve of a given set of 10 transit model

Figure 1. The transit duration T is equal to the stellar diameter divided by the
mean orbital velocity, which is equal to a P2p in the case of a circular orbit.
Rearrangement of the equation in the lower panel yields the normalized
semimajor axis a R*. An analogous calculation is possible for planets on
eccentric orbits (for which orbital velocity varies with phase), provided the
eccentricity is known.
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stellar parameters. In Section 2, we describe our host star target
selection and detail our data analysis, including data processing,
detrending, and Markov chain Monte Carlo (MCMC) approach to
fitting the transit model. In Section 3, we present the results of this
analysis, including the full posterior distributions of the stellar
density and LDCs. We specifically discuss the types of planet–star
systems for which this method succeeds in producing high-
precision constraints on stellar density in Section 3.3.1. We
conclude and highlight this approach’s potential to aid in the
characterization of singly transiting planets discovered by the
upcoming NASA TESS mission in Section 4.
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2.1. How to Measure
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r from a Transit Light Curve

Seager & Mallén-Ornelas (2003) demonstrated that the mean
stellar density ρ* can be measured from a transit light curve
without any direct measurement of the stellar mass M* or
radius R* as a result of Kepler’s third law. Figure 1 offers some
intuition about this procedure in the case of a circular orbit, and
we sketch the analytic derivation of the circular-orbit case here.
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Therefore, to measure ρ*, we need only know the orbital
period P and normalized semimajor axis a R* of a planet
orbiting the star. (In particular, neither M* nor R* is necessary

to obtain ρ*.) Both P and a R* are directly measurable from
the transit light curve: P is the interval between successive
transits, and a R* can be derived from the transit duration.
In the case of a circular orbit, a R* follows trivially from the
transit duration and P (see Figure 1):
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orbit also influences the transit duration T. The exact solution for T
in the case of an eccentric orbit involves solving a quartic equation
in fcos , where f is the true anomaly (see Kipping 2008, 2010 for
details). However, Kipping (2010) found the following approx-
imate expression for T under the simplifying assumption that the
planet–star separation does not change during the transit:
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where ñc is the separation between the planet and star at mid-
transit in units of stellar radii.
Since e and ρ* both influence the transit duration T, it is

necessary to have a precise constraint on e in order to derive a
precise constraint on ρ* (Kipping 2010). For some planets,
such as planets with observed secondary eclipses, e is directly
measurable (e.g., Knutson et al. 2007a); for others, such as
planets on very short-period orbits that are expected to tidally
circularize quickly or planets in compact multi-planet systems,
dynamical stability constrains e to low values. For each of these
categories of planet—secondary-eclipse planets, tidally circu-
larized planets, and multi-planet systems—we may express the
existing eccentricity constraint as a Bayesian prior on e. In
Sections 2.2.1–2.2.3, we describe how we select a sample of
Kepler objects of interest (KOIs) belonging to each category
for transit modeling.
We note that, in principle, ρ* could also be measured from

the transits of planets with radial velocity–measured eccentri-
cities. However, analyzing such planets requires jointly fitting
the radial velocity curves, including accurate treatment of
stellar activity effects. This is beyond the scope of the present
study, and we defer the analysis of planets with radial velocity–
measured e to later work.
Assuming, then, that we have a strong e prior, all we must do

to measure ρ* from a transit is fit a transit model comprising 10
parameters: the transit epoch t0, the orbital period P, the impact
parameter b, the stellar density ρ*, the ratio of radii R Rp *, the
orbital eccentricity e, the argument of periastron ω, and three
coefficients of a modified nonlinear limb-darkening law
(transformed to allow for efficient sampling as described in
Kipping 2016): , ,r ha a and aq. In other words, we must explore
this 10-dimensional parameter space and find a region that
matches the Kepler transit data.
We use the transit-modeling code BATMAN (Kreidberg 2015)

to compute the light curve of a given set of 10 transit model

Figure 1. The transit duration T is equal to the stellar diameter divided by the
mean orbital velocity, which is equal to a P2p in the case of a circular orbit.
Rearrangement of the equation in the lower panel yields the normalized
semimajor axis a R*. An analogous calculation is possible for planets on
eccentric orbits (for which orbital velocity varies with phase), provided the
eccentricity is known.
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(Maxted et al. 2015, Seager & Mallén-Ornelas 2003)

M★=(4π/3)R★3ρ★Measure of stellar mass

8



R. Ligi SF  2A 20  19

Stellar density from transit light  
curve

interferometry

M★=(4π/3)R★3ρ★Measure of stellar mass

Mp Rp

Model-independent parameters
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The star: 55 Cnc

PDF 

R★ =0.980±0.016 R⦿ 

ρ★ =1.015±0.051 ρ⦿ 

 
Joint PDF 

M★ =1.015±0.051 M⦿ 

Correlation (M★ - R★) = 0.995!

Crida, Ligi et al. 2018 a,b
Ligi et al. 2016
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The transiting planet: 55 Cnc e

PDF 

Rp = 1.947±0.038 R⊕ 

Mp = 8.59±0.43 M⊕ 

 
Joint PDF 

ρp =1.164±0.062ρ⊕  

= 6421±342 kg.m3  

Correlation (Mp - Rp)=0.54

With corr.

wrong density

PDF of 55 Cnc e

Mp [M⨁]

Crida, Ligi et al. 2018 a,b  
Dorn et al. 2017

wrong density

Rp
 [R

⨁
]
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The transiting planet: 55 Cnc e

With corr.

wrong density

PDF of 55 Cnc e

Mp [M⨁]

wrong density

Crida, Ligi et al. 2018 a,b  
Dorn et al. 2017

Rp
 [R

⨁
]

Atmosphere thickness  
= 3% of Rp  

➔ not a good target for 
transmission spectroscopy 

➔ chemistry of the interior 
non necessarily carbon-rich
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The star: HD219134

noticeable and sobering. The use of precision Doppler velocity
measurements to detect the class of planetary systems that
dominate the Kepler census is fraught with potential pitfalls.
The time series of RV measurements for HD 219134 is no

exception, and there are several specific concerns. (1) With
half-amplitudes K 2 m s 11 - for three of the inner planets (b, c,
and f), the signals are weak. (2) For planets with low
amplitudes, the presence of aliases can plague correct
interpretation of the periodicities in the data. (3) The proximity
to mean-motion resonances for b–c and for f–d–g leads to

Figure 12. Left panel: orbital plot of the 6-planet model. Right panel: orbital plot of the inner five planets. The radius of each point is proportional to the square root of
its minimum mass.

Table 3
Best-fit Six-Keplerian Model for HD 219134

HD 219134b HD 219134c HD 219134f HD 219134d HD 219134g HD 219134h

P (days) 3.0931 [0.0001] 6.7635 [0.0006] 22.805 [0.005] 46.71 [0.01] 94.2 [0.2] 2247 [43]
isin( )% jup( )% 0.012 [0.001] 0.011 [0.002] 0.028 [0.003] 0.067 [0.004] 0.034 [0.004] 0.34 [0.02]

M (deg) 57 [20] 78 [27] 263 [20] 277 [11] 107 [35] 209 [56]
e 0 0 0 0 0 0.06 [0.04]
ω (deg) 0 0 0 0 0 215 [50]
K m s 1[ ]- 1.9 [0.2] 1.4 [0.2] 2.3 [0.2] 4.4 [0.2] 1.8 [0.2] 6.1 [0.3]
a (AU) 0.0384740 8 10 7[ ]´ - 0.064816 4 10 6[ ]´ - 0.14574 2 10 5[ ]´ - 0.23508 4 10 5[ ]´ - 0.3753 [0.0004] 3.11 [0.04]
Tperi (JD) 2449999.5 [0.2] 2449998.5 [0.5] 2449983 [1] 2449964 [1] 2449972 [9] 2448725 [356]

Q01 snoise m s 1( )- 1.1 [0.2]
KECK snoise m s 1( )- 2.5 [0.2]
APF snoise m s 1( )- 1.8 [0.2]
Q01 vD m s 1( )- −0.9 [0.6]
KECK vD m s 1( )- −0.8 [0.2]
APF vD m s 1( )- −2.3[0.6]

%� ( )%: 0.794
2c 280.407
log $- 593.311

rms m s 1( )- 2.223

,Jitter�s m s 1( )- 2.038
Epoch [JD] 2450000
Data points 276

Table 4
Cross-validation Results

log cv$

No planets −804.34
1 planet (h) −754.59
2 planets (h, d) −699.17
3 planets (h, d, f) −672.69
4 planets (h, d, f, b) −640.45
5 planets (h, d, f, b, g) −614.71
6 planets (h, d, f, b, g, c) −594.11

10
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The star: HD219134

Ligi et al., in prep.

PDF 

R★ = 0.726±0.014 R⦿ 

ρ★ = 1.74±0.22 ρ⦿ 

 
Joint PDF 

M★ = 0.696±0.078 M⦿ 

Correlation (M★ - R★) = 0.46
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The two transting planets:  
HD219134 b & c

Ligi et al.,  
in prep.

Planet b Planet c

PLANET B PLANET C

Radius 1.50 ± 0.06 R⊕ 1.41 ± 0.05 R⊕

Mass 4.27 ± 0.34 M⊕ 3.96 ± 0.34 M⊕

Density 1.27 ± 0.16 ρ⊕ 1.41 ± 0.17 ρ⊕ 

Corr. (Mp - Rp) 0.22 0.23
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The two transting planets:  
HD219134 b & c

Ligi et al.,  
in prep.

Planet b Planet c

Different densities. 
How to explain it?
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Three hypothesis: 

• Different volatile content 

• Different rock composition 

• Different state of rock

Thinglink

Ligi et al.,  
in prep.
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The two transting planets:  
HD219134 b & c
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Three hypothesis: 

• Different volatile content 

• Different rock composition 

• Different state of rock

Thinglink

One could be molten 

N-body simulations 

Ligi et al.,  
in prep.
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Comparison with models

3-6 % de différence

14% de différence
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Conclusion and perspectives

• Stars to study exoplanets (Mp, Rp) 

• Exoplanets to study stars (M★, R★, ρ★) 

• And exoplanetary systems in general

U. Heiter et al.: Gaia FGK benchmark stars
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Fig. 8. Fundamental Te↵ and log g values for Gaia FGK benchmark
stars. Colour indicates [Fe/H] (non-LTE) as determined in Paper III.
Circles: stars for which both ✓LD and Fbol have been measured; trian-
gles up: stars with only ✓LD measured; triangles down: stars with only
Fbol measured; diamonds: both calibrated.

in Table 10. Figure 8 shows the distribution of the stars in
the Te↵–log g plane, with metallicity indicated by the symbol’s
colour (cf. Table 1). The sample covers the expected locations
of FGK-type dwarfs, subgiants, and giants fairly well. It is ob-
vious that stars with metallicities around the solar value domi-
nate. However, the metal-poor stars are distributed regularly over
the parameter space. The uncertainties in ✓LD and Fbol listed in
Table 4 are below 5% for all stars (except Fbol for two M gi-
ants), propagating to Te↵ uncertainties below 1% for half of the
stars and below 2% otherwise (except for  Phe). Uncertainties
in log g are below 0.1 dex except for the coolest giants (up
to 0.3 dex).

In Fig. 8, the shape of the symbol indicates the quality
of the input angular diameters and bolometric fluxes. Twenty-
two stars have both measured angular diameters and integrated
bolometric flux values, which is two thirds of the current sam-
ple (disregarding the Sun, see Table 4, rows without asterisks).
Five stars have measured ✓LD values, but calibrated bolometric
fluxes: the K dwarf ✏ Eri, the metal-poor (sub)giants HD 140283,
HD 122563, and HD 220009, and the M giant � Ara. Two
metal-poor dwarfs have integrated bolometric fluxes, but indi-
rect ✓LD values (HD 22879, HD 84937). Lastly, for four stars
the angular diameter is currently not directly measured, and
the bolometric flux is determined from a calibration (the metal-
rich dwarf µ Ara, the subgiant ✏ For, and the giants µ Leo and
HD 107328).

The colour index V � K has high sensitivity to e↵ective tem-
perature and low sensitivity to metallicity (see e.g. Boyajian
et al. 2013). As can be seen in Fig. 9, the stars in our sam-
ple follow a tight relation in the V � K versus fundamental
Te↵ diagram. Figure 9 shows the empirical relation derived by
Boyajian et al. (2013) based on 111 FGK dwarfs with measured
angular diameters and represented by a third-order polynomial
(their Eq. (2)) using the coe�cients given in their Table 8, row
(V �K)c. Excellent agreement is evident, except for the warmest
and coolest stars. We note the deviating point at V � K ⇡ 2 cor-
responding to Gmb 1830, which is discussed in Sect. 5.2.6.

In Sects. 5.2 to 5.4, we present comparisons of the funda-
mental Te↵ and log g values with spectroscopic and photometric
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Fig. 9. Fundamental Te↵ as a function of V � K colour index. Symbols
and colours are as in Fig. 8. V magnitudes are mean values extracted
from the GCPD (Mermilliod et al. 1997). K magnitudes were taken
from the 2MASS catalogue (Cutri et al. 2003) if the entry had qual-
ity flag (Qflg) “A”. Otherwise they are mean values taken from the
Catalog of Infrared Observations (Gezari et al. 2000), if available, and
transformed to the 2MASS system (Carpenter 2001, Eq. (A1)). Stars
with large error bars in V � K have K magnitudes from 2MASS with
Qflg “D”. V � K for the Sun was taken from Casagrande et al. (2012).
Grey line: empirical relation derived by Boyajian et al. (2013, their
Eq. (2) and Table 8, row (V � K)c).

determinations, and with estimates based on parallaxes and as-
teroseismic data, and we discuss several cases in detail. The im-
patient reader may at this point skip to Sect. 6.1, where we give
a brief summary of the status and conclusions for each star, and
refer to the detailed discussions, as appropriate.

5.2. Comparison of fundamental Te↵ to other methods

The sample of Gaia FGK benchmark stars was selected to in-
clude bright and well-known stars. Thus, many studies report-
ing temperatures can be found in the literature. In addition to
our fundamental method the two main approaches to determine
e↵ective temperatures are through spectroscopic analysis or re-
lations with photometric colour indices, the latter mostly based
on the infrared flux method (IRFM). Spectroscopic temperature
determinations are usually based on the requirement of excita-
tion equilibrium of neutral iron lines or on fitting the profiles
of Balmer lines. We queried the PASTEL catalogue18 (Soubiran
et al. 2010) for temperatures of Gaia FGK benchmark stars pub-
lished between 2000 and 2012. We supplemented the results
with some additional data and classified the Te↵ determinations
by method. Duplicate values and those outside the two categories
were removed. We compiled 191 Te↵ determinations using spec-
troscopic methods and 108 values using photometric calibra-
tions. Ten or more Gaia FGK benchmark stars were analysed
spectroscopically by Valenti & Fischer (2005), Luck & Heiter
(2005), and Bruntt et al. (2010), while photometric tempera-
ture determinations have been published for more than ten stars
by Allende Prieto et al. (2004), Ramírez & Meléndez (2005),
Ramírez et al. (2007), and Casagrande et al. (2011).

18 http://vizier.u-strasbg.fr/viz-bin/Cat?B/pastel,
Version 17-May-2013.
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Table 2
Atmospheric Parameters for Stars from Different Methods

HD KIC Teff log g [Fe/H] Ref.

173701 8006161 5390(60) 4.49(3) 0.34(6) 1∗

5399(44) 4.53(6) 0.32(3) 2
5423(20) 4.4(2) 0.2(1) 3
5423(10) . . . . . . 4

189349 5737655 5070(100) 2.4(1) − 0.7(1) 5a∗

5145(63) 2.4(1) − 0.54(5) 5b∗

5163(71) 2.9(2) − 0.44(11) 5c

Notes. ∗ log g fixed to asteroseismic value.
References. (1) Bruntt et al. 2012; (2) Valenti & Fischer 2005; (3) Mishenina
et al. 2004; (4) Kovtyukh et al. 2003; (5) this paper: a, VWA (Bruntt et al. 2010);
b, Santos et al. (2004) and Sousa et al. (2006, 2008); c, ROTFIT (Frasca et al.
2003, 2006).

methods, given in Table 1, for the remainder of this paper. Note
that for HD 173701 spectroscopic parameters have also been
published by Valenti & Fischer (2005), Mishenina et al. (2004),
and Kovtyukh et al. (2003), which are also listed in Table 2 for
comparison. The published values are in good agreement with
the values adopted here.

All stars in our sample have measured Hipparcos parallaxes
(van Leeuwen 2007), with uncertainties ranging from ∼ 1% to
10%. All unevolved stars in our sample are at distances <60 pc
and hence reddening is expected to be negligible (see Molenda-
Żakowicz et al. 2009; Bruntt et al. 2012). Hence, we assumed
zero reddening for all unevolved stars with an uncertainty of
0.005 mag. For the giants, we have estimated reddening by
comparing observed colors to synthetic photometry of models
matching the spectroscopic parameters in Table 1, as described
in more detail in Section 3.3. To estimate an uncertainty, we
have compared these values to E(B − V ) values listed in the
Kepler Input Catalog (KIC; Brown et al. 2011) for nearby
stars and to estimates from the three-dimensional extinction
model by Drimmel et al. (2003). The mean scatter between
these methods for all stars is 0.02 mag, which we adopt as our
uncertainty in E(B− V ) for the giants in our sample. Finally, we
used the spectroscopically determined effective temperatures
and metallicities to estimate a bolometric correction for each
star using the calibrations by Flower (1996) and Alonso et al.
(1999) with appropriate zero points as discussed in Torres
(2010), yielding the stellar luminosity given in the last column
of Table 1. Figure 1 shows an H-R diagram of our target stars,
according to the properties listed in Table 1, together with solar-
metallicity BaSTI evolutionary tracks (Pietrinferni et al. 2004).

3. OBSERVATIONS

3.1. Asteroseismology

The asteroseismic results presented in this paper are based
on observations obtained by the Kepler and CoRoT space
telescopes. Both satellites deliver near-uninterrupted, high
signal-to-noise (S/N) time series which are ideally suited for
asteroseismic studies. In this paper, we focus on two global
parameters: the frequency of maximum power (νmax) and the
large frequency separation (∆ν). These are frequently used
to determine fundamental properties of main-sequence and
red giant stars (see, e.g., Miglio et al. 2009; Stello et al.
2009b; Kallinger et al. 2010b, 2010c; Chaplin et al. 2011;
Hekker et al. 2011a, 2011b; Silva Aguirre et al. 2011; Huber
et al. 2010, 2011; Mosser et al. 2012a). For a general introduc-

Figure 1. H-R diagram with the positions of the target stars calculated using
spectroscopy, photometry, and Hipparcos parallaxes. Solar-metallicity BaSTI
evolutionary tracks from 0.6–2.6 M⊙ in steps of 0.1 M⊙ are shown as gray
lines. The dashed line marks the approximate location of the cool edge of the
instability strip.

tion to solar-like oscillations, we refer the reader to the review
by Bedding (2011).

Figure 2 presents the power spectrum for each star, sorted by
the frequency of maximum power (νmax). In most cases, a clear
power excess due to solar-like oscillations is visible. A summary
of the data sets used in our analysis, as well as the derived
asteroseismic parameters, is given in Table 3. The analysis of
Kepler stars is based on either short-cadence (Gilliland et al.
2010b) or long-cadence (Jenkins et al. 2010) data up to Q10,
which were corrected for instrumental trends as described in
Garcı́a et al. (2011). Global asteroseismic parameters were
extracted using the automated analysis pipeline by Huber et al.
(2009), which has been shown to agree well with other methods
(Hekker et al. 2011c; Verner et al. 2011). Due to the length and
very high S/N of the Kepler data, the modes are resolved and
uncertainties on νmax and (particularly) ∆ν are dominated by the
adopted method (e.g., the range over which ∆ν is determined)
rather than measurement errors. To account for this, we added
in quadrature to the formal uncertainties an uncertainty based
on the scatter of different methods used by Silva Aguirre et al.
(2012) for short-cadence data and by Huber et al. (2011) for
long-cadence data. The analysis by Huber et al. (2011) was
based on data spanning from Q0–6, which in most cases was
sufficient to resolve the modes and reliably estimate νmax and
∆ν (Hekker et al. 2012). In general, the uncertainties on the
asteroseismic parameters for most Kepler stars are negligible
compared to the uncertainties on other observables. A notable
exception is HD 189349, with a relatively large uncertainty of
∼ 4% in the large frequency separation. Inspection of the power
spectrum shows that the modes for this star are very broad,
making a determination of ∆ν difficult. We speculate that the
unusually broad modes may be related to the low metallicity of
this object, but a more in-depth analysis is beyond the scope of
this paper.

For the two CoRoT stars in our sample, we have re-analyzed
publicly available data using the method described in Huber
et al. (2009). Our results for HD181420 are in good
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