Dark matter on small scales: from giant galaxies to dwarf spheroidals

Mass in Universe: dominated by Dark Matter

Nature of Dark Matter *unknown*, except that it is

- dwarf galaxies ⇒ fairly cold (heavy)
- fairly collisionless

Motivations

- 1) Nature of Dark Matter:
- mass of particle(s)
- self-interaction cross section
- decay time

OR Modified Gravity?

2) Reference for astrophysical studies

Dark matter characteristics to measure:

- normalization
- inner slope
- concentration
 for z=0 galaxies of ≠ masses & types
 + scatter

Expectations from cosmological dynamical simulations & abundance matching

Density profiles in cosmological N body simulations

inner slope ≈ $-1.2 @ 0.01 r_{vir}$

DM density profiles from cosmological N-body simulations with gas

dominant baryons that radiate & cool → even cuspier DM

intermittent SN feedback → cored DM

Hydro cosmological simulations w SN feedback at different resolutions

MW-mass very cuspy giant ellipticals cuspy classical dSph cored ultra-faint dSph cuspy

inner slope $\neq f(m_{\text{stars}}/M_{\text{halo}})$

Cusps vs. Cores

DM normalization from Abundance Matching

equate the cumulative halo and observable mass functions

massive galaxies should have *more* DM very low mass galaxies should be *fully dominated by* DM

Methods for inferring the Dark Matter distribution

Spheroidal systems: using different physics

Newtonian dynamics: mass/orbit modeling

Jeans Equation

$$\nabla \cdot \boldsymbol{P} = -\nu \, \nabla \Phi$$

Jeans Equation
$$\nabla \cdot \boldsymbol{P} = -\nu \, \nabla \Phi$$

$$\frac{d \left(\nu \sigma_r^2 \right)}{dr} + 2 \frac{\beta(r)}{r} \, \nu \sigma_r^2 = -\nu \frac{GM(r)}{r^2}$$

Hydrodynamics: hydrostatic equilibrium of X-ray gas

General relativity: gravitational lensing

Particle physics: γ -ray annihilation or decay

Subtract off visible matter!

Spheroidal systems: using different physics

Newtonian dynamics: mass/orbit modeling

Jeans Equation

$$\nabla \cdot \boldsymbol{P} = -\nu \, \nabla \Phi$$

$$\frac{d\left(\nu\sigma_r^2\right)}{dr} + 2\frac{\beta(r)}{r}\,\nu\sigma_r^2 = -\nu\frac{GM(r)}{r^2}$$

mass / (velocity) anisotropy degeneracy

"sweet" radius where mass independent of anisotropy

Disk galaxies: using Newtonian dynamics

Dark Matter in spiral galaxies

Inner slopes of DM in disk galaxies

THINGS galaxies

Einasto fits ⇒

n correlated with mass
Chemin+11; Ghari+19

gas-rich dwarfs have DM cores (in agreement with SPH sims)

Constant surface density DM cores of disk galaxies

Dark Matter in elliptical galaxies

Missing Dark Matter in ellipticals?

Science 2003

A Dearth of Dark Matter in Ordinary Elliptical Galaxies

Aaron J. Romanowsky, ^{1,2*} Nigel G. Douglas, ²
Magda Arnaboldi, ^{3,4} Konrad Kuijken, ^{5,2} Michael R. Merrifield, ¹
Nicola R. Napolitano, ² Massimo Capaccioli, ^{3,6} Kenneth C. Freeman ⁷

~ radial outer orbits!

Fractions of Dark Matter vs. radius

DM fraction vs radius for NGC 3379 (log M_{stars}=10.75)

dark matter fraction vs mass at 1, 2 & 5 R_{eff} from satellite kinematics of SDSS galaxies

Dark Matter fractions

dark matter fraction vs mass at 1, 2 & 5 Reff

Dark Matter fractions

dark matter fraction vs mass at 1, 2 & 5 Reff

Dark Matter fractions

Missing Dark Matter in Ultra-diffuse galaxies?

LETTER

van Dokkum+18, Nature

doi:10.1038/nature25767

A galaxy lacking dark matter

Pieter van Dokkum¹, Shany Danieli¹, Yotam Cohen¹, Allison Merritt^{1,2}, Aaron J. Romanowsky^{3,4}, Roberto Abraham⁵, Jean Brodie⁴, Charlie Conroy⁶, Deborah Lokhorst⁵, Lamiya Mowla¹, Ewan O'Sullivan⁶ & Jielai Zhang⁵

10 globular cluster redshifts

- $\rightarrow \sigma_{LOS} \sim 8$ km/s (incl. one outlier) $\Rightarrow \sigma_{intrinsic} \sim 3$ km/s
 - \Rightarrow dark matter fraction(R_{max}) < **0.4** (90% confidence)
- Re-analysis of velocity dispersion Martin+18; Laporte+19
- Stellar mass halo mass prior Wasserman+18
- Surface density of GC distribution: Sersic instead of power-law Hayashi & Inoue 18
- Modeling with tides Nusser 19

DM fraction(R_{max}) < **0.9** (90% cl)

- 30% closer distance Trujillo+19
- Velocity dispersions: stellar > GC Emsellem+19

Low-mass dwarfs are darker

color-dependence

Dark matter concentration

DM concentration vs. mass

red galaxies have *greater DM concentration* than blue galaxies of same stellar (or total) mass

Signature of galaxy assembly bias:

old (young) stellar populations in galaxies whose DM halos assembled earlier (later)

Fornax: core (WP11, AAE13, Diak+17) OR cusp (BH13) Sculptor: core (WP11, Breddels+13) OR cusp (RF14, BH13, SFW17) OR in between (Zhu+16)

Authors	Galaxies	Method	Results	Comments
Walker & Penãrrubia 11	Fornax & Sculptor	Wolf pinch with 2 populations	both core	non-cst σ_{LOS} ?
Jardel+13	Draco	orbit (non- parametric)	cuspy: $\gamma = -1 \pm 0.2$	
Amorisco, Angello & Evans 13	Fornax	Wolf pinch with 3 populations	core: $r_0 = 1^{+0.8}_{-0.4}$ kpc OR huge c	1 pop has non-cst σ_{LOS}
Richardson & Fairbairn 14	Sculptor	dispersion- kurtosis	cuspy if Plummer tracer	
Breddels+13	Sculptor	orbit model'g fit to σ_{LOS} & κ_{LOS}	core, but cusp not ruled out	
Breddels & Helmi 13	Fornax, Sculptor, Carina & Sextans	orbit model'g fit to σ_{LOS} & κ_{LOS}	joint: cuspy	
Mamon+15, conf	Fornax	MAMPOSSt	cuspy, core or undetermined	depends on priors!
Pace 16	Ursa Minor	2 populations	core, but cusp not ruled out	
Zhu+16	Sculptor	Watkins	$\gamma = -0.5 \pm 0.3$	Gaussian <i>v</i> _{LOS} , non-spherical
Strigari, Frenk & White 17	Sculptor	separable <i>f</i> (<i>E</i> , <i>J</i>) on binned data	consistent with NFW	only tried NFW Gaussian σ_{LOS} error
Diakogiannis+17	Fornax	non-param. eta inversion	mass follows light!	tangential outer anisotropy: merger

DM inner slope depends on priors!

Conclusions

DM required in galaxies in standard gravitational physics

Kinematic studies \approx confirm U-shaped $M_{\text{tot}}/m_{\text{stars}}$ vs m_{stars} DM dominates in massive galaxies @ \sim 2 R_{eff} (scatter!)

DM concentration → halo "ages" correlated with stellar ages (TBC)

Inner slopes of spirals \approx don't yet confirm \land -shaped vs $m_{\text{stars}}/M_{\text{tot}}$

Inner slopes of dSphs:
Fornax & Sculptor → inconclusive
need more data on (DM-dominated) ultra-faint dwarfs

Hydro simulations are not yet trustworthy (resolution with high statistics; sub-grid recipes for SN & AGN feedback; effects of cosmic rays ...)

Perspectives

massive galaxies

- E-ELT / HIRES $R=10^5 \rightarrow z$ to 0.5 km/s
- → LOS component of acceleration field?
- = finer probe of potential
- ... baseline $\Delta t = r^2 \Delta v / [GM(r)] < 10$ yr for r < 2 pc! $\stackrel{(GM(r))}{=}$

dSph galaxies

- CTA Cerenkov array
- \rightarrow 1st spatially resolved γ -ray annihilation or decay
- ... complex background from particle showers 😐

dSph galaxies

Need much, much better proper motions than Gaia DR2 😐

- → HST+JWST repeated observations on dSphs
- → proposed Theia mission of ultra-fine astrometry (65x Gaia)

