Dark matter on small scales: from giant galaxies to dwarf spheroidals ### Mass in Universe: dominated by Dark Matter Nature of Dark Matter *unknown*, except that it is - dwarf galaxies ⇒ fairly cold (heavy) - fairly collisionless ### Motivations - 1) Nature of Dark Matter: - mass of particle(s) - self-interaction cross section - decay time **OR Modified Gravity?** 2) Reference for astrophysical studies #### Dark matter characteristics to measure: - normalization - inner slope - concentration for z=0 galaxies of ≠ masses & types + scatter # Expectations from cosmological dynamical simulations & abundance matching #### Density profiles in cosmological N body simulations inner slope ≈ $-1.2 @ 0.01 r_{vir}$ # DM density profiles from cosmological N-body simulations with gas dominant baryons that radiate & cool → even cuspier DM intermittent SN feedback → cored DM ## Hydro cosmological simulations w SN feedback at different resolutions MW-mass very cuspy giant ellipticals cuspy classical dSph cored ultra-faint dSph cuspy inner slope $\neq f(m_{\text{stars}}/M_{\text{halo}})$ ### Cusps vs. Cores # DM normalization from Abundance Matching equate the cumulative halo and observable mass functions massive galaxies should have *more* DM very low mass galaxies should be *fully dominated by* DM # Methods for inferring the Dark Matter distribution #### Spheroidal systems: using different physics Newtonian dynamics: mass/orbit modeling Jeans Equation $$\nabla \cdot \boldsymbol{P} = -\nu \, \nabla \Phi$$ Jeans Equation $$\nabla \cdot \boldsymbol{P} = -\nu \, \nabla \Phi$$ $$\frac{d \left(\nu \sigma_r^2 \right)}{dr} + 2 \frac{\beta(r)}{r} \, \nu \sigma_r^2 = -\nu \frac{GM(r)}{r^2}$$ Hydrodynamics: hydrostatic equilibrium of X-ray gas General relativity: gravitational lensing Particle physics: γ -ray annihilation or decay ## Subtract off visible matter! #### Spheroidal systems: using different physics Newtonian dynamics: mass/orbit modeling Jeans Equation $$\nabla \cdot \boldsymbol{P} = -\nu \, \nabla \Phi$$ $$\frac{d\left(\nu\sigma_r^2\right)}{dr} + 2\frac{\beta(r)}{r}\,\nu\sigma_r^2 = -\nu\frac{GM(r)}{r^2}$$ mass / (velocity) anisotropy degeneracy "sweet" radius where mass independent of anisotropy #### Disk galaxies: using Newtonian dynamics # Dark Matter in spiral galaxies #### Inner slopes of DM in disk galaxies #### THINGS galaxies Einasto fits ⇒ n correlated with mass Chemin+11; Ghari+19 gas-rich dwarfs have DM cores (in agreement with SPH sims) # Constant surface density DM cores of disk galaxies # Dark Matter in elliptical galaxies # Missing Dark Matter in ellipticals? Science 2003 ## A Dearth of Dark Matter in Ordinary Elliptical Galaxies Aaron J. Romanowsky, ^{1,2*} Nigel G. Douglas, ² Magda Arnaboldi, ^{3,4} Konrad Kuijken, ^{5,2} Michael R. Merrifield, ¹ Nicola R. Napolitano, ² Massimo Capaccioli, ^{3,6} Kenneth C. Freeman ⁷ ~ radial outer orbits! # Fractions of Dark Matter vs. radius DM fraction vs radius for NGC 3379 (log M_{stars}=10.75) dark matter fraction vs mass at 1, 2 & 5 R_{eff} from satellite kinematics of SDSS galaxies ## Dark Matter fractions dark matter fraction vs mass at 1, 2 & 5 Reff ## Dark Matter fractions dark matter fraction vs mass at 1, 2 & 5 Reff ## Dark Matter fractions # Missing Dark Matter in Ultra-diffuse galaxies? #### LETTER van Dokkum+18, Nature doi:10.1038/nature25767 #### A galaxy lacking dark matter Pieter van Dokkum¹, Shany Danieli¹, Yotam Cohen¹, Allison Merritt^{1,2}, Aaron J. Romanowsky^{3,4}, Roberto Abraham⁵, Jean Brodie⁴, Charlie Conroy⁶, Deborah Lokhorst⁵, Lamiya Mowla¹, Ewan O'Sullivan⁶ & Jielai Zhang⁵ #### 10 globular cluster redshifts - $\rightarrow \sigma_{LOS} \sim 8$ km/s (incl. one outlier) $\Rightarrow \sigma_{intrinsic} \sim 3$ km/s - \Rightarrow dark matter fraction(R_{max}) < **0.4** (90% confidence) - Re-analysis of velocity dispersion Martin+18; Laporte+19 - Stellar mass halo mass prior Wasserman+18 - Surface density of GC distribution: Sersic instead of power-law Hayashi & Inoue 18 - Modeling with tides Nusser 19 DM fraction(R_{max}) < **0.9** (90% cl) - 30% closer distance Trujillo+19 - Velocity dispersions: stellar > GC Emsellem+19 ## Low-mass dwarfs are darker color-dependence ### Dark matter concentration #### DM concentration vs. mass red galaxies have *greater DM concentration* than blue galaxies of same stellar (or total) mass Signature of galaxy assembly bias: old (young) stellar populations in galaxies whose DM halos assembled earlier (later) # Fornax: core (WP11, AAE13, Diak+17) OR cusp (BH13) Sculptor: core (WP11, Breddels+13) OR cusp (RF14, BH13, SFW17) OR in between (Zhu+16) | Authors | Galaxies | Method | Results | Comments | |---------------------------------|---------------------------------------|--|--|---| | Walker & Penãrrubia 11 | Fornax & Sculptor | Wolf pinch with 2 populations | both core | non-cst σ_{LOS} ? | | Jardel+13 | Draco | orbit (non-
parametric) | cuspy: $\gamma = -1 \pm 0.2$ | | | Amorisco, Angello
& Evans 13 | Fornax | Wolf pinch with 3 populations | core: $r_0 = 1^{+0.8}_{-0.4}$ kpc
OR huge c | 1 pop has non-cst σ_{LOS} | | Richardson & Fairbairn 14 | Sculptor | dispersion-
kurtosis | cuspy if Plummer tracer | | | Breddels+13 | Sculptor | orbit model'g fit to σ_{LOS} & κ_{LOS} | core,
but cusp not ruled out | | | Breddels & Helmi
13 | Fornax, Sculptor,
Carina & Sextans | orbit model'g fit to σ_{LOS} & κ_{LOS} | joint: cuspy | | | Mamon+15, conf | Fornax | MAMPOSSt | cuspy, core or undetermined | depends on priors! | | Pace 16 | Ursa Minor | 2 populations | core, but cusp not ruled out | | | Zhu+16 | Sculptor | Watkins | $\gamma = -0.5 \pm 0.3$ | Gaussian <i>v</i> _{LOS} , non-spherical | | Strigari, Frenk & White 17 | Sculptor | separable <i>f</i> (<i>E</i> , <i>J</i>) on binned data | consistent with NFW | only tried NFW Gaussian σ_{LOS} error | | Diakogiannis+17 | Fornax | non-param. eta inversion | mass follows light! | tangential outer anisotropy: merger | ## DM inner slope depends on priors! ### Conclusions DM required in galaxies in standard gravitational physics Kinematic studies \approx confirm U-shaped $M_{\text{tot}}/m_{\text{stars}}$ vs m_{stars} DM dominates in massive galaxies @ \sim 2 R_{eff} (scatter!) DM concentration → halo "ages" correlated with stellar ages (TBC) Inner slopes of spirals \approx don't yet confirm \land -shaped vs $m_{\text{stars}}/M_{\text{tot}}$ Inner slopes of dSphs: Fornax & Sculptor → inconclusive need more data on (DM-dominated) ultra-faint dwarfs Hydro simulations are not yet trustworthy (resolution with high statistics; sub-grid recipes for SN & AGN feedback; effects of cosmic rays ...) ## Perspectives #### massive galaxies - E-ELT / HIRES $R=10^5 \rightarrow z$ to 0.5 km/s - → LOS component of acceleration field? - = finer probe of potential - ... baseline $\Delta t = r^2 \Delta v / [GM(r)] < 10$ yr for r < 2 pc! $\stackrel{(GM(r))}{=}$ #### dSph galaxies - CTA Cerenkov array - \rightarrow 1st spatially resolved γ -ray annihilation or decay - ... complex background from particle showers 😐 #### dSph galaxies Need much, much better proper motions than Gaia DR2 😐 - → HST+JWST repeated observations on dSphs - → proposed Theia mission of ultra-fine astrometry (65x Gaia)