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What are FRBs

IShort (ms) and intense (Jy) pulses in
~GHz frequency band

JTwo repeaters among ~50 objects.
Repeaters are extragalactic

JUnkwonwn sources (magnetars
favoured for repeaters). Likely
compact objects

JUnknown emission mechanism but
must be coherent:

brightness temp. Ty~10* K
JMore theories than discovered FRBs
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Shots in the dark

Fast radio bursts have puzzled theorists since their discovery in 2007. Their short duration and stretched frequencies imply compact, distant sources. One possibility
is a magnetar, a highly magnetized neutron star, the city-sized cinder of an exploded star. Young magnetars blast out flares of electrons and ions. When a flare hits
slower moving clouds of ions, it creates a shockwave. Electrons in the shockwave gyrate around magnetic field lines and emit a laser-like pulse of radio waves.
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Why Synhrotron Maser for FRBs?

* One of few coherent mechanisms in plasma astrophysics

* Magnetar flares are associated with powerful blast waves
(Lyubarsky 2014, Beloborodov 2017)

* However, efficiency and spectrum of emission are
typically postulated and very poorly constrained by non-
linear physics




Mechanism

Synchrotron maser at magnetized relativistic shocks

* Naturally produced in
magnetized relativistic
shocks

(Gallant et al 92)
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Synchrotron maser at magnetized relativistic shocks
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Mechanism

Synchrotron maser at magnetized relativistic shocks

* Naturally produced in
magnetized relativistic
shocks

(Gallant et al 92)

)

* Inversion of population
(ring-distribution) at the
shock front
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* Linearly polarized
(X-mode wave)




1D PIC Simulations

Precursor wave train emission in high-sigma shock
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1D PIC Simulations

Wave energy vs usptream magnetization
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1D PIC Simulations

Emitted wave spectrum

e Large number of resonances S 1
-> non-monochromatic

k-spectrum
= = =w-spectrum

* Low frequency cutoff
(vertical orange lines)

* Intrinsic peak frequency in
the observer frame:
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10° 10! 102
AV / Vpk ~ 3 w/wy, or (kQCZ/wg +1)1/2



2D and 3D simulations




2D effect -> upstream plasma heating & filamentation
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3D very simular to 2D
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2D & 3D vs 1D: wave energetics
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Astrophysical application to flares in magnetars

Metzger et al, 2019, MNRAS, 458
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Application to flares in magnetars II

107!

1072

1078

107

107°

Observed spectrum may be different of the instrinsic:

Intrinsic

from Plotnikov & Sironi

1 10 100
v/v,




vL, (arbitrary units)

Application to flares in magnetars II

Observed spectrum may be different of the instrinsic:
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Application to flares in magnetars II

Observed spectrum may be different of the instrinsic:
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Application to flares in magnetars II

Observed spectrum may be different of the instrinsic:
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Summary

FRBs as maser emission from shocks in magnetar flares

Lyubarsky, 2014, Beloborodov, 2017
Plotnikoov & Sironi, 2019, MNRAS, 458
Metzger etal, 2019, MNRAS, 458

* Synchrotron maser emission 1s a viable FRB emission
mechanism (but not the only)

* Naturally produces coherent, high brightness temperature,
linearly polarized wave. Falls into GHz band under

reasonable assumptions.

* Accounts for most features of two known repeater FRBs




Supplements




Cavity m the shock structure
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Rankine-Hugoniot reproduced?

Lorentz factor of the shock front = f(sigma):
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Yes, to a good precision...
but small differences due to the wave turbulence
(especially around sigma=0.1)




