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What are FRBs 

q Short (ms) and intense (Jy) pulses in 
~GHz frequency band 

q Two repeaters among ~50 objects. 
Repeaters are extragalactic 

q Unkwonwn sources (magnetars 
favoured for repeaters). Likely 
compact objects 

q Unknown emission mechanism but 
must be coherent: 

  brightness temp. TB~1035 K 
q More theories than discovered FRBs 
 

Thornton et al 13 





•  One of few coherent mechanisms in plasma astrophysics 
•  Magnetar flares are associated with powerful blast waves 

(Lyubarsky 2014, Beloborodov 2017)  
•  However, efficiency and spectrum of emission are 

typically postulated and very poorly constrained by non-
linear physics  

Why Synhrotron Maser for FRBs? 
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•  Linearly polarized 

(X-mode wave) 
 



Precursor wave train emission in high-sigma shock 

1D PIC Simulations 
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Wave energy vs usptream magnetization 

1D PIC Simulations 

•  Low-σ : up to 3% 
efficiency (emitted wave 
energy/ incoming) 
Maximal at σ~0.1 

 
•  σ>>1:  

 efficiency ~ 7x10-3/σ2 

 
 

The conversion is efficient for a broad range of σ 



Emitted wave spectrum 

1D PIC Simulations 

•   Large number of resonances 
-> non-monochromatic 
 

•  Low frequency cutoff 
(vertical orange lines) 
 

•  Intrinsic peak frequency in 
the observer frame: 

 
 
  Set by dynamic + ext. medium 
 
•  The spectrum is narrow 

         Δν / νpk ~ 3 
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2D and 3D simulations 



 Density 
 
 
 
<Density> 
 
 
 
 

 
Bz 
 
 

<Bz> 
 
 
Phase space: x-px	

2D effect -> upstream plasma heating & filamentation 

Result: reduction of the wave energy  



3D very simular to 2D 



2D & 3D vs 1D: wave energetics 

Reduced but still reasonably high efficiency: up to 0.1% 



Astrophysical application to flares in magnetars 

Metzger et al, 2019,  MNRAS, 458 



Astrophysical application to flares in magnetars 
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Application to flares in magnetars II 

•  Observed frequency set by intrinsic + external medium 
•  Explains downward ‘drift’ of peak frequency in time. 
•  Provides ‘naturally’ ~GHz frequency 
 
 

Observed spectrum may be different of the instrinsic: 
 

Intrinsic Escaping 
Blast decel. + 
Damped 
in the nebula 



FRBs as maser emission from shocks in magnetar flares 

Summary 

Lyubarsky, 2014, Beloborodov, 2017 
Plotnikoov & Sironi, 2019,  MNRAS, 458 
Metzger et al, 2019,  MNRAS, 458 

•  Synchrotron maser emission is a viable FRB emission 
mechanism (but not the only) 
 

•  Naturally produces coherent, high brightness temperature, 
linearly polarized wave. Falls into GHz band under 
reasonable assumptions. 
 

•  Accounts for most features of two known repeater FRBs 
 



Supplements 



Cavity in the shock structure 
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Rankine-Hugoniot reproduced? 
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Yes, to a good precision… 
 but small differences due to the wave turbulence 
 (especially around sigma=0.1) 

Lorentz factor of the shock front = f(sigma): 


