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Abstract.

The quasi-commensurability 7:3 between the mean motions of the Galilean satellites Ganymede and
Callisto, known as De Haerdtl inequality, has never been taken into account in the scenarii of dynamical
evolution of the Galilean satellites.

We used numerical tools like frequency maps to detect the chaos induced by the inequality. We showed
that it induces chaos, more particularly because of Callisto’s eccentricity. Anyway, even if the orbits were
nearly circular, Callisto’s inclination is strong enough to induce chaos. This inclination is forced by the Sun,
this means that Jupiter’s obliquity is partly responsible of the chaos induced by De Haerdtl inequality. This
chaos is due to Chirikov diffusion, say to overlaps of resonances.

1 Introduction

As we saw in (Noyelles & Vienne 2005), De Haerdtl great inequality between the Galilean satellites Ganymede
and Callisto is of high dynamical interest. This 7 : 3 mean-motion inequality induces chaos because of overlaps
of lots of resonances that can be associated to a 4th-order mean-motion commensurability.

In this proceeding, we go further in the study of De Haerdtl inequality. We determine the conditions on
eccentricities and inclinations that lead to chaos, and we identify some resonances responsible for this chaos.

2 A numerical study

We use a numerical system of 21 variables simulating the motion of the 4 Galilean satellites. For each satellite,
we use 5 classical variables ai (semimajor axis), hi, ki (related to eccentricity and pericentre), pi and qi (related
to inclination and ascending node), i varying from 1 to 4 and being related to the satellite involved (1 stands
for J-1 Io, 2 for J-2 Europa, 3 for J-3 Ganymede and 4 for J-4 Callisto). The 21st variable is 3λ3 − 7λ4, where
λi is the mean longitude. This last variable is the argument of De Haerdtl inequality.

We performed long-term numerical simulations with a 10th order Adams-Bashforth-Moulton integrator.
The dynamical effects we took into account are Jupiter’s oblateness, secular perturbations of the four Galilean
satellites and the Sun until 4th order in eccentricity/inclination, and of course De Haerdtl inequality. Our initial
conditions are summarized Table 1 and have been obtained from L1 ephemerides (Lainey et al. 2004).

We used Laskar’s algorithm (see for instance Laskar 1993) to extract the nine main proper modes of the
system ν0 to ν8. ν0 is related to the Laplacian plane of the system, while ν1 to ν4 are near the pericentres of
the 4 Galilean satellites, and ν5 to ν8 near their ascending nodes.

3 Apparition of chaos

3.1 The method

We detected chaos using frequency maps, as did Laskar (1993). More precisely, we plotted fundamental fre-
quencies of the system on two-dimensional maps, for different values of eccentricities and inclinations of the
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Table 1. Initial conditions of the system. They have been obtained from L1 ephemerids at their origin after having

dropped the short-period terms. Some of these initial conditions (more particularly a3 and a4) change in some simulations,

this will be detailed when needed.

J-1 Io J-2 Europa

a1 422029.9575713722 km a2 671261.1707586185 km
h1 2.211748005524882× 10−5 h2 −1.012497227930342× 10−4

k1 −5.275314833959475× 10−5 k2 −1.113739262971603× 10−4

p1 −1.582110263967550× 10−4 p2 −4.005213221974558× 10−3

q1 −2.925173017648710× 10−4 q2 −4.801551767300432× 10−5

J-3 Ganymede J-4 Callisto

a3 1070621.015486640 km a4 1883133.519125367 km
h3 4.036767745745128× 10−4 h4 7.373394680171398× 10−3

k3 −1.467743466069845× 10−3 k4 −6.832780074387413× 10−4

p3 5.104532163169044× 10−4 p4 −1.577330958427725× 10−3

q3 1.686910272912197× 10−3 q4 5.738930348850733× 10−4

3λ3 − 7λ4 0.1508363483032813

Table 2. Dynamical parameters related to Ganymede and Callisto. ei are the eccentricities and γi the sines of the

semiinclinations of the satellites on Jupiter’s equatorial plane. These values have been obtained with our system of

equations and initial conditions obtained from L1 ephemerides imputed from terms that do not appear in our system.

Parameter present value ”forced” part ”free” part

e3 1.53 × 10−3 9.6 × 10−4 5.7 × 10−4

γ3 1.93 × 10−3 7.9 × 10−4 1.14 × 10−3

e4 7.37 × 10−3 2.1 × 10−4 7.16 × 10−3

γ4 3.93 × 10−3 3.93 × 10−3 small

satellites. An irregular map is associated to chaos. On every map, each point has been obtained after a numer-
ical simulation whose initial values of a3 and a4 (Ganymede’s and Callisto’s semimajor axes) vary respectively
between 1070150 and 1070700 km and 1883080 and 1883200 km. Their current mean values are respectively
1070621.016 and 1883133.154 km among Lainey’s last ephemerides (Lainey et al. 2006).

3.2 Significant parameters

We homothetically changed (hi, ki) and (pi, qi) to change respectively the eccentricities and inclinations of the
satellites from the values indicated Table 1, in order to check their influences on the chaos. It is interesting
to notice that these parameters have a part forced by the other parameters, that is the reason why we cannot
change these parameters freely. Table 2 summarizes these free and forced parts.

3.3 Results

Figure 1 shows two examples of frequency maps. They can be considered as projections on the plane (ν̇1, ν̇4)
of an application that associates (a3, a4) to the fundamental frequencies of the system. These frequencies have
been obtained after 1638.4 years, with a step of 0.1 year, so with 16384 values. They show the frequency ν̇1 vs.
ν̇4 of the system with (left) and without (right) De Haerdtl inequality with current values of eccentricity and
inclinations.

When the system is regular, the maps show parallelograms because the fundamental frequencies we plot are
”near” pericentres’ velocities. These velocities depend on semimajor axes, which are different for every point.

Looking at the maps lets us conclude that

• At low e4, strong chaos appears when e3 becomes higher than 3 × 10−3.
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Fig. 1. Frequency maps (ν̇1, ν̇4) with (left) and without (right) De Haerdtl inequality, with current values of eccentricities

and inclinations. The units are day−1. These 2 plots illustrate clearly how to distinguish a regular map from an irregular

one. This is a way to ”see” the chaotic behaviour induced by De Haerdtl inequality.

• With e3’s present value, De Haerdtl inequality induces less chaos if e4 is lower than 3 × 10−3.

• If e3 and e4 are very low, strong chaos appears when γ3 is higher than 2.5 × 10−3.

4 Identification of chaos

In a planetary system, chaos is often due to Chirikov diffusion (1979), say to overlaps between resonances. It is
possible to identify this chaos by plotting the possible resonances, whose arguments are like 3λ3 − 7λ4 + Σqiνi,
with Σqi = 4 among D’Alembert rule, and to see an ”interesting” behaviour (say, stable resonances, oscillations
between several resonances, etc . . . ).

4.1 The method

The frequency analysis algorithm gives us the phase of every proper mode at a given time. We used this
algorithm to plot the terms likely to be interesting along several numerical simulations with current values of
eccentricities and inclinations, and with 400 different values of α = a3

a4
, between 0.56830 and 0.56855, current

mean α being 0.56852.

4.2 Exploring some arguments

Plotting every argument of these 400 simulations shows us several possible resonances, as seen Fig. 2. This
work is still in progress but we can right now give a short list of possible stable resonances :

• 3λ3 − 7λ4 + 2ν0 + ν3 + ν4 (Fig. 2)

• 3λ3 − 7λ4 + 2ν4 + ν6 + ν7

• 3λ3 − 7λ4 + ν0 + ν3 + ν4 + ν6

• 3λ3 − 7λ4 + 3ν3 + ν4

This list is not exhaustive and will be in a next future completed by other terms as well as overlaps leading
for instance to stable chaos.
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Fig. 2. An example of stable resonance. Here is plotted 3λ3 − 7λ4 + 2ν0 + ν3 + ν4 vs time (in years). The system is

trapped in a resonance at about 50000 years, this can be seen by the libration of this argument around 0. The amplitude

of librations decreases with time, what lets us infer that this resonance is quite stable. So it is worth to compute this

argument on a longer timespan.

5 Conclusion

This study shows that De Haerdtl inequality induces chaos for convenient values of eccentricies, inclinations
and semimajor axes. We can infer that the semimajor axes have had these values in the past, the satellites
migrating under tidal effects. This means that every scenario of dynamical evolution of the Galilean satellites
must take De Haerdtl inequality into account. We also see that the inclinations have significant effects. These
inclinations are forced by the Sun, say by Jupiter’s obliquity. So, the evolution of Jupiter’s obliquity should
also be taken into account in a dynamical study of the Galilean satellites.

This work is still in progress and should lead to a new scenario of the formation of the Laplacian resonance
between Io, Europa and Ganymede. This scenario must include De Haerdtl inequality as well as the evolution
of Jupiter’s obliquity, responsible of Callisto’s inclination, and consequently of chaos.
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