α-ABUNDANCE IN THE MILKY WAY'S THIN AND THICK DISKS : AUTOMATED DETERMINATION OF T_{EFF} , LOGG, [F_E/H] AND [α/F_E]

P. Girard¹ and C. Soubiran¹

Abstract. I present TGMET α , a method developed in order to determine T_{eff} , logg, [Fe/H] and $[\alpha/Fe]$ for large samples of FGK stars at various spectral resolutions. TGMET α is a minimum distance algorithm based on the χ^2 comparison of an observed spectrum to a grid of synthetic spectra. The results of TGMET α have been extensively tested against several hundreds spectra of reference stars with atmospheric parameters and abundances known from the literature. Typical rms precisions at high resolution are $\sigma_{Teff} \sim 140$ K, $\sigma_{logg} \sim 0.27$, $\sigma_{[Fe/H]} \sim 0.14$ and $\sigma_{[\alpha/Fe]} \sim 0.05$. The algorithm was run on nearly 2000 ELODIE echelle spectra in order to build a large sample of stars with kinematics, metallicity and $[\alpha/Fe]$. This new sample was used to investigate the properties of Milky Way's thin disk and thick disk.

1 The method

The observed (target) spectrum is submitted to severals operations: wavelength calibration, straightening, removing of telluric lines and cosmics. Each synthetic spectrum is transformed in order to fit the target spectrum: convolution at the same resolution, radial velocity shift, resampling, flux adjustement by least-squares. TGMET α computes the distance between the target spectrum and each synthetic spectrum (reduced χ^2). The atmospheric parameters of the target spectrum are computed by averaging those of the nearest synthetic spectra.

2 Results of Teff, logg, [Fe/H] and $[\alpha/Fe]$ determinations

TGMET α has been tested with ELODIE spectra at nominal resolution (R=42 000). We compared values with those from several reference catalogues in the literature (Fig. 1).

The rms precisions are: $\text{rms}_{Teff} = 138 \text{ K}$; $\text{rms}_{logg} = 0.27$; $\text{rms}_{[Fe/H]} = 0.13$; $\text{rms}_{[\alpha/Fe]} = 0.05$.

A linear correction has to be applied to Teff and logg in order to take into account the different scales of the synthetic grid versus the literature determinations. TGMET α has been also tested with ELODIE degraded spectra at R=10 000 and R=1 000 with similar performances.

3 Application to a large sample of 1500 stars

Thanks to TGMET α run on 1500 stars we have assembled a large sample of disk stars with (U,V,W), [Fe/H] and [α /Fe]. A kinematical classification of the thin/thick disks has been performed (Soubiran & Girard 2005) and we have observed abundance trends. The Fig. 2 shows parallel trends and overlap in metallicity with an offset of 0.10 dex in [α /Fe]. A change of slope in the thick disk appears at [Fe/H] \approx -0.35 dex. These metal-rich stars with [Fe/H]>-0.3 dex are real thick disk stars or thin disk stars? Their origins (streams, accretion ?) have to be investigated.

4 Perspectives

The next step is to test other grids of synthetic spectra with a wider range of $[\alpha/\text{Fe}]$ and to run TGMET α on large samples of stars observed from various spectrographs with different wavelength ranges and resolutions.

¹ Observatoire de Bordeaux, BP 89, 33270 Floirac, France

Fig. 1. Comparison to reference values compiled from the literature.

Fig. 2. $[\alpha/\text{Fe}]$ vs [Fe/H] per bin of metallicity. The thick disk is shown in red and the thin disk in blue.

References

Soubiran, C. & Girard, P. 2005, A&A, 438, 139