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Abstract. In this paper, we study in detail the requirements on orbitography compatible with operation of
next generation space clocks at the required uncertainty, and based on a completely relativistic model. We
show that the required accuracy goal can be reached with relatively modest constraints on the orbitography
of the space clock, much less stringent than expected from ”naive” estimates using the example of the ACES
mission. Our results are generic to all space clocks and represent a significant step towards the generalised
use of next generation space clocks in fundamental physics, geodesy, and time/frequency metrology.

1 Introduction

Over the last decade of the 20th century and the first few years of the 21st, the uncertainty of atomic clocks has
decreased by over two orders of magnitude, passing from the low 10−14 to the below 10−16, in relative frequency
(Bize et al. 2005; Heavner et al. 2005; Oskay et al. 2006). Space applications in fundamental physics, geodesy,
time/frequency metrology, navigation, etc... are among the most promising for this new generation of clocks.
However this requires a precise knowledge of the clock precision. As an example, simple order of magnitude
estimates of the relativistic gravitational frequency shift show that an 1m error on the position of the clocks
leads to an error of ∼ 10−16 in the determination of their frequency difference.

In this paper, we study in more detail the requirements on orbitography compatible with operation of next
generation space clocks at the required uncertainty, and based on a completely relativistic model. We use the
example of the ACES (Atomic Clock Ensemble in Space) mission, an ESA-CNES project to be installed onboard
the ISS (International Space Station) in 2014. For such a space station, one meter precision in position is difficult
to obtain. We briefly describe the ACES mission and the relativistic model used for the clocks and the time
transfer, followed by a description of a model for the orbitography error to be expected onboard the ISS, based
on measurements using an in situ GPS receiver. Our main results are the calculation of the effect of that error
on the determination of the relativistic frequency shift of the clocks and on the time transfer (MWL) for the
ACES mission, where we show that the mission objectives can be achieved with relatively modest orbitography
and, more generally, calculate the overall requirements on orbitography for the ACES mission. Our results
are generic to all space clocks (not limited to the ACES mission) and represent a significant step towards the
generalised use of next generation space clocks in fundamental physics, geodesy, and time/frequency metrology.

2 The ACES mission

The ACES project led by the CNES and the ESA aims at setting up on the ISS several highly stable clocks a
cold atom clock PHARAO developed by CNES and a hydrogen maser (SHM developed by Neuchtel observatory)
together with a microwave communication link. The objectives of the mission are to reach a time stability for
ground to space comparisons of 0.3 ps at one ISS pass and 7 ps at one day. For our purposes we express the
above requirements for the MWL in a simplified form by the temporal Allan deviation (σx(τ)) :

σx(τ) = 5.2 · 10−12 · τ− 1
2 (2.1)

for one single passage (for integration times τ lower than 300 s) and by

1 LNE-SYRTE, Observatoire de Paris, 61 av. de l’Observatoire, 75014 Paris, France
2 Centre National d’Etudes Spatiales, 18 Avenue Edouard Belin, 31401 Toulouse, France
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σx(τ) = 1, 7 · 10−14 · τ 1
2 (2.2)

for longer integration times (for integration times τ greater than 300 s).
The time transfer is performed using a micro-wave two-way system, called Micro-Wave Link (MWL). Each

reception or emission event is tagged by its coordinate time ti (see Fig. 1). For instance, the f1 frequency signal
is emitted by the ground station at the coordinate time t1 and received by the space station at t2. The third
frequency is added to measure the TEC in the ionosphere which allows the correction of the ionospheric delay.
The combination of the observables coming from both signals f1 and f2 allows to evaluate the desynchronisation.
By derivation, we obtain the frequency difference between the ground and the space clocks. We define −→xg, −→vg

and −→ag respectively as the position, the velocity and the acceleration of the ground station, and −→xs, −→vs and −→as

respectively as the position, the velocity and the acceleration of the space station, in a non-rotating geocentric
coordinate system (eg. GCRS as defined by the IAU).

Fig. 1. MWL principle

In a general relativistic framework each clock produces its own local proper time, in our case τg and τs for
the ground and space clocks respectively. The relation between the proper time and the coordinate time t is
given to sufficient accuracy by Blanchet et al. (2001):

dτ

dt
= 1 −

(
U(t,−→x )

c2
+

v2(t)
2c2

)
+ O(c−4) (2.3)

where U is the Newtonian potential at the coordinate time t and the position −→x and v the velocity of the
studied clock.

It is the derivative with respect to the coordinate time t of the relation which has to be studied for applications
such as test of the gravitational redshift or geodesy:

dτg

dt
− dτs

dt
=

1
c2

·
(

U(t,−→xs) − U(t,−→xg) +
v2

s(t)
2

−
v2

g(t)
2

)
+ O(c−4). (2.4)

The ACES mission aims at obtaining the variation of the desynchronisation between ground and space clocks
with time, that is to say, the function τg(t) − τs(t). It is evaluated by combining the measurements performed
on the ground and onboard the space station and a precise calculation of the signal propagation times. Then
the expression of desynchronisation reads:

τg(ta) − τs(ta) =
1
2
(∆τs (τs(t2)) −∆τg (τg(t4)) + T12 − T34

−
∫ t2

t1

(
U(t,−→xg)

c2
+

v2
g(t)
2c2

)dt +
∫ t4

t3

(
U(t,−→xs)

c2
+

v2
s(t)
2c2

)dt) (2.5)
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where ta = (t2 + t4)/2, and where τs(τs(t2)) and τg(τg(t4)) are the observables respectively from the ground
and onboard the satellite at the coordinate times t2 and t4 and Tij is defined as Tij = tj − ti.

The integral terms result from proper time to coordinate time transformations. They are small corrections
of order 10−12 s to the desynchronisation τg(ta)−τs(ta). In (2.5) the difference T12−T34 needs to be calculated
from the knowledge of satellite and ground positions and velocities (orbitography). The difference T12 − T34 of
upward and downward signals at f1 and f2 allows to eliminate to first order delaying and restraining factors such
as range, troposphere or Shapiro effects (Shapiro 1964). Due to the asymmetry of the paths, that cancellation
is not perfect, and there are some terms left which depend on orbitography as well as on the coordinate time
interval T23 elapsed between reception and emission at the phase centre of the MWL antenna onboard the ISS.
The aim of this work is to estimate with a simple orbital model, which levels of accuracy on orbitography and
calibration of internal delays (knowledge of T23) are required to reach the expected performances.

For that purpose only the leading terms are required ie.

T12 − T34 = 2
−→
D(t4).−→vg(t4)

c2
+

−→
D(t4).

−→
∆v(t4)

c · D(t4)
T23 + O(

1
c3

). (2.6)

where
−→
D(t) = −→xs(t)−−→xg(t), D(t) = ||−→D(t)|| and ∆−→v (t) = −→vg(t)−−→vs(t). In summary, a reliable orbitography

is required for two main reasons. On one hand to calculate precisely the corrections in equation (2.6). On
the other hand, to evaluate correctly the terms on the right hand side of equation (2.4) ie. the second order
Doppler and gravitational redshifts. In addition, we also need a precise knowledge of the time interval T23, (ie.
of the onboard internal delays) in order to be able to calculate the corresponding terms in (2.6) with sufficient
accuracy. Equation (2.6) together with equation (2.4) for the gravitational redshift, is sufficient to derive the
maximum allowed uncertainties on orbitography and internal delays in order to stay below the limits given by
(2.1) and (2.2).

3 Orbit Determination Error Model

Now we investigate the effects of trajectory knowledge on the accuracy and the stability of the time transfer
(see equation (2.6)) and on the estimation of the relativistic correction of the clock (see equation (2.4)).

For the time transfer (2.6) we have to consider the position of the antenna phase center, but it is the clock
reference point trajectory which is important for equation (2.4). The trajectories of the antenna phase center
and of the clock reference point are obtained the trajectory of ISS center of mass (orbit determination error),
and a geometrical offset (vector ISS center of mass - reference point) which depends on the attitude and on the
geometry of the ISS (on position errors in the ISS frame).

The differences between true and computed (using orbit determination and attitude) trajectories of the ISS
center of mass have very specific structures. For example an eccentricity error gives no long term effects, but
periodic errors can be important and the radial, along track and velocity errors are correlated. This means that
position and velocities are not independent, and if possible, this has to be taken into account for a performance
evaluation.

For weak eccentricity orbits, errors of the ISS center of mass position are given by the Hill model (or the
Clohessy-Wiltshire model) which is an expansion of uncertainties with respect to a reference circular orbit. This
error model takes into account the correlation between all orbitographic parameters. It gives their expressions
in the local orbital frame (

−→
R ,

−→
T et

−→
N ) defined with

−→
R the unity vector between the Earth’s center and the

space station,
−→
N orthogonal to

−→
R and the inertial velocity and where

−→
T is orthogonal to

−→
R and

−→
N . Then the

position uncertainties along radial, tangential and normal axis are given as follows :

radial axis : δR(t) =
1
2
X · cos(ωt + ϕR) + cR

tangential axis : δT (t) = −X · sin(ωt + ϕR) − 3
2
ω · cR · t + dR

normal axis : δN(t) = Y · cos(ωt + ϕN )

(3.1)
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where X , Y , cR and dR are amplitude coefficients, and where ω is the orbital pulsation. Surface accelerations
errors are not taken into account, because this model corresponds to a local error of the adjusted trajectory
and adapted for short arc length.

An ISS orbitography restitution using an onboard GPS receiver gives the orders of magnitude of these
coefficients. It typically leads to X and Y lower than ten meters, that is to say, a ten meters bound on the
normal axis and a five meters bound on the which gives ten meters oscillations on the tangential axis. Moreover
bias and linear terms (cR and dR) depend on the arc length. Basically the longer the observation duration is,
the smaller these coefficient become. The major feature of the error model is to take into account the error
correlations in the orbital plane. For instance, a positive radial bias leads to a negative error on the tangential
velocity: the satellite is delayed with respect to the reference orbit.

We note (
−→
X (t),

−→
V (t)) the true trajectory of the reference point and (

−→
X ′(t),

−→
V ′(t)) the computed trajectory

of the reference point. According to the studied case, the reference point is either the antenna phase center
or the clock reference point. We also define (

−→
X o(t),

−→
V o(t)) the true trajectory and the true velocity of the

center of mass of the station. These five trajectories are expressed in non-rotating geocentrical frame (GCRS,
Geocentric Celestial Reference System) (Soffel et al. 2003).

Now we have to express the effects of station trajectory and time calibration uncertainties on time transfer
and on gravitational redshift.

On one hand, according to the equation (2.5), the error in the time transfer is related with the uncertainties
of T12−T34 entering in the desynchronisation . It can be obtained from the simplified equation (2.6) and is then
dependant of the ground and space stations trajectories knowledge, of the value of T23 and of the uncertainty
on this parameter. As said before, a precise knowledge of the time interval T23 is related to the internal delays
calibration. If we suppose the uncertainty on ground station position is negligible with respect to the ISS
position errors, the knowledge of the vector

−→
D is related to the uncertainty on the position on the space station

reference point which is the antenna phase center. Then we have δ
−→
D =

−−−→
XaX ′

a. The error on T12 − T34 can be
written as:

δ (T12 − T34) = 2
−−−→
XaX ′

a.−→vg

c2
+

−→
D.

−→
∆v

c · D δT23 +

(−−−→
XaX ′

a.
−→
∆v

c · D −
−→
D

c · D.
d
−−−→
XaX ′

a

dt
−

−→
D.

−→
∆v

c · D
‖
−−−→
XaX ′

a‖
D

)
T23 (3.2)

On the other hand, the computation of the clock relativistic correction along a trajectory is defined by
equation (3.1). It depends on the position and the velocity of the reference point, in this case the clock. We
need to express the error on the reference point frequency - that is to say the frequency difference between the
true clock position and the computed clock position - in order to compare its Modified Allan stability with the
specifications. The gravitational potential can be evaluated on a given trajectory with a sufficient precision
(Wolf & Petit 1995) using gravity models (eg. GRIM5 or EGM96).The error on the frequency shift at the clock
position is given by:

δ(
dτ

dt
)−→
Xc

= (
dτ

dt
)−→
Xc

− (
dτ

dt
)−→
X′

c

= − 1
c2

(
U(t,

−→
Xc) − U(t,

−→
X ′

c) +
V 2

c − V ′2
c

2

)
(3.3)

Using the fact that
−→
X o is the solution of the differential equation

d2−→X o

dt2
=

−→
Γ P +

−→
Γ S (3.4)

where
−→
Γ P is the acceleration due to gravitational potential and

−→
Γ S is the acceleration due to other effects

(e.g. surface forces like air drag and radiation pressure), in (3.3), we obtain:

(
dτ

dt
)−→
X

− (
dτ

dt
)−→
Xo

= − 1
c2

[
d
−→
V o

dt
.
−−−→
XoX +

−→
Vo.

d
−−−→
XoX

dt
+

1
2
(
d
−−−→
XoX

dt
)2 −−→

Γ S .
−−−→
XoX

]
(3.5)

In order to simplify the equation (3.5), we evaluate the order of magnitude of the different contributors

appearing in this equation. To investigate the importance of the term
−→
Γ S.

−−−→
XcX′

c
c2 , the drag has been modelled
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along a reference orbit of the ISS, for various altitudes. A period with important solar activity has been chosen
in order to evaluate the worst case. To estimate its effect on formula (3.5), the acceleration has been multiplied
by a 10 meter bias or a 10 meter sinusoidal function at orbital period, corresponding to possible attitude and
orbit errors effects of the ISS. The corresponding Allan variance of fractional frequency stays below 10−21, which
is totally negligible here. This term has also no effect on the frequency accuracy. The effect of other surface
accelerations like solar radiation pressure is also negligible.

The residual term of the second order Doppler shift 1
2c2

[
(d

−−−→
XoXc

dt )2 − (d
−−−→
XoX′

c
dt )2

]
must be computed with the

GCRS trajectories for attitude or orbital errors. The corresponding Allan variance is bounded by 10−16 · τ−1

for a 10 meter sinusoidal function at orbital period. This effect is also negligible. However because of the power
of two, this term does not have a zero mean. The magnitude of this frequency bias can be evaluated as equal to
1.7 ·10−21. As far as the ACES mission is concerned, this effect can also be neglected. So only the component of
the clock error parallel to the velocity of the ISS plays a role. This can be understood considering for example
a purely positive radial component. In this case we underestimate the gravitational potential but overestimate
the velocity (at constant ω), so the two cancel.

4 Numerical Results On Clock Comparison

In this section we use the previously described error model to calculate realistic requirements for time transfer
and gravitational frequency shift. For this purpose, we consider an ephemeris of ISS. First we study the time
transfer between the International Space Station and a ground station based in Toulouse, France. For this
purpose, we first consider the error equation (3.2) on the time transfer. We choose the signs of the independent
parameters (X , T23 and δT23) so as to maximize the resulting temporal Allan deviation. The calculated
deviations have to be compared with the MWL’s specifications (2.1). Assuming we have no error on T23 (ie.
δT23 =0 s), for all values of factor X (or Y ) of equation (3.1), it is possible to determine the maximum value of
the time interval T23 for which the temporal Allan deviation remains under the specifications. With numerous
values of X , we calculate a bound which marks out two different areas: the allowed uncertainties area in which
each couple (X , T23) gives a deviation staying under the specifications, and the prohibited area.

Figure (2) shows that, the smaller the time interval is, the less precise the space station position knowledge is
required. This result provides a way to combine upwards and downwards signals in order to allow the maximum
uncertainty on space station position to comply with the specifications. The most favourable situation to
combine upwards and downwards signals is when the reception at the antenna phase center of the space station
corresponds to the emission at the same place ie. t2 = t3. This way of combining signals is named the ”Λ
configuration”. To work with parameter X in the asymptotic area requires T23 to be under 10−6 s.

Then if we plot the maximum value of δT23 for all values of the factor X , there will appear two asymptotic
values we cannot cross if we want to stay under the specifications. Basically a compromise between the knowledge
of the space station trajectory and the precision of the internal delays calibration must be achieved owing to the
maximization of the Allan deviation. We will evaluate the maximum allowed errors on these two parameters if
no other errors are present.

First we search for the asymptotic value of factor X which complies with the specifications for all phases
values (ϕR, ϕN ) when we have no error on T23. The asymptotic value for orbitography is obtained for X =
2150 which corresponds to a 2.1 km error on the normal and tangential axis, and to an 1 km error on the radial
axis (see Fig. (2)).

The asymptotic value of the time calibration does not depend on orbitographic uncertainties. So it is
independent of the phases (ϕR, ϕN ). We find that δT23 must stay under 5.2 · 10−8 s (see Fig. (3)). Moreover
the accuracy on the time transfer is not a problem because all the terms of the equation (3.2) have zero mean
for one passage.

The requirements for several passes have also been investigated. In this case, the calculated deviations have
to be compared to the specifications given by (2.2). The results of this work showed that the requirements
on orbitography and time calibration are less stringent for several passes than for a single pass. Therefore
if specifications are respected for a single pass, specifications for longer integration times are most likely also
respected as the requirements on the uncertainty on T23 are less stringent in that case.

Now we evaluate requirements on orbitography considering the gravitational frequency shift. We search for
the maximum value of X to comply with the long term specifications (2.2). First term of (3.5) is evaluated
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Fig. 2. left: maximum allowed value of T23 as function of the scale factor X to comply with the specifications, assuming

δT23 = 0 / right: maximum allowed value of δT23 as function of the scale factor X to comply with the specifications,

assuming T23 = 0

with the error model (3.1), and its Allan deviation is calculated for different values of X . For integration time
greater than one thousand seconds, these Allan deviations are independent of the phases ϕR and ϕN .

Figure (3) shows that, if the factor X is equal to 16 m ie. if we have an eight meter error on the radial axis
and sixteen meter error on the tangential axis, then we comply with the specifications. The requirement on the
factor Y is two orders of magnitude less stringent than on the factor X . This is mainly due to the projection
of the position error along the ISS center of mass velocity (see equation (3.5)).

The accuracy requirement of ACES is 10−16 in relative frequency over ten days. From the integral of equation
(3.5) this implies that the position error (

−−−→
XcX ′

c in (3.5)) cumulated over ten days needs to remain below one
kilometer including for example the linear term along the tangential axis in (3.1)). This has to be compared
with the typical ten meter error on the tangential axis. Therefore, the accuracy requirement should not raise
any difficulty.

Fig. 3. left: temporal Allan deviations for X = 0, T23 = 0 s and δT23 = [51, 52, 53, 54] ns /right: modified Allan

deviations of the redshift error for X=14,16,18,20 m

5 Conclusions

The formulations of time transfer and clock relativistic effects errors were described and applied on standard
errors corresponding to orbit determination and geometry. We also evaluated the order of magnitude of the
main effects. Investigating the requirements for the ACES mission provides a way to combine upwards and
downwards signals (the ’Λ configuration’). Thus the requirements on orbitography and time calibration have
been identified to reach stability specifications. They are summarized in table (1).

The periodic error on the radial axis and on the tangential axis must stay respectively below eight and
sixteen meters. The uncertainty on the normal axis is two orders of magnitude less stringent. Moreover the
error on internal delays (δT23) must not exceed fifty two nanoseconds. At last the requirement on the tangential
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drift (below one kilometer in ten days) is easily reached in order to comply with the accuracy specification
(10−16 in relative frequency at ten days).

In conclusion the requirements on orbitography are significantly less stringent than the initial ’naive’ estimate
(one meter error for 10−16 in relative frequency) which is mainly due to partial cancellation between the
gravitational redshift and the second order Doppler effect.

Table 1. Requirements on parameters
X (m) Y (m) δT23 (ns)

16 2150 52
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