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ON TYPE I PLANETARY MIGRATION IN AN ADIABATIC DISK

C. Baruteau1 and F. Masset1

Abstract. A low mass planet embedded in a circumplanetary disk should undergo a fast orbital decay
towards the central object. This process, known as type I migration, has been extensively studied analytically
and numerically, assuming that the disk is either barotropic, or described with a locally isothermal equation
of state. We investigate in this communication the case of an adiabatic disk, by means of two-dimensional
hydrodynamic simulations. Entropy perturbations, that are advected in the planet’s coorbital region, yield
an excess of corotation torque that scales with the initial entropy gradient at corotation. This excess can be
large enough to slow down the migration process significantly, or even stop it.

1 Context and numerical setup

Recently, Paardekooper & Mellema (2006) have revisited the type I migration with high resolution three-
dimensional calculations, including radiative transfer. They find that the total torque exerted by the disk on
the planet increases with the disk opacity. For sufficiently large values of the opacity (and in the limit case
of an adiabatic flow, corresponding to an infinite opacity), they find that the total torque on the planet is
positive. This result is of great importance, as it potentially solves the lingering problem of type I migration.
The present work corresponds to an attempt to further investigate this topic, so as to identify the physical
mechanism responsible for these effects. For this purpose, we consider a more restricted situation, namely
two-dimensional adiabatic flows.

Our numerical simulations are performed with the code FARGO (Masset 2000). It is a staggered mesh
hydrocode that solves the Navier-Stokes and continuity equations on a polar grid. A locally isothermal equation
of state is used to close the hydrodynamic equations: the vertically integrated pressure p of the disk and its
surface density Σ are connected with p = Σc2

s,iso, where cs,iso denotes the isothermal sound speed.
In this communication, we investigate the case of an inviscid, radiatively inefficient disk, in the adiabatic

limit. For this purpose, we implemented in FARGO an energy equation that is equivalent to the Lagrangian
conservation of the gas entropy S, defined as S = pΣ−γ . The hydrodynamic equations are closed by the equation
of state p = Σc2

s,adi/γ, where the adiabatic index γ is set to 1.4 and cs,adi = √
γ cs,iso denotes the adiabatic

sound speed.
In this work, we aim at comparing the disk’s response to the introduction of a low mass planet, the disk

being described either by a locally isothermal equation of state, or by an adiabatic energy equation. The
isothermal and adiabatic calculations have same initial surface density and temperature profiles. Figure 1 yields
an overview of the disk’s response in both situations. It represents the relative perturbation of the disk surface
density with respect to the initial, unperturbed state. Two main differences can be highlighted:

1. The wake generated by the planet is less tightly wound when an adiabatic energy equation is taken
into account, since the adiabatic sound speed is greater than the isothermal one. We comment that the
differential Lindblad torque, which scales as c−2

s (Ward 1997), is therefore weakened by a factor of γ in
an adiabatic disk. The same is true of the corotation torque, when there is no entropy gradient.

2. The adiabatic situation displays an additional density structure, located in a narrow annulus surrouding
the planet. This structure can have a dramatic impact on the corotation torque, as we shall see.
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Fig. 1. Relative perturbation of the gas surface density, after 25 planet orbital periods, obtained with the isothermal

calculation (left panel) and the adiabatic calculation (right panel). In this cartesian representation, the planet is located
in x = 1, y = 0. The color scale is identical in both panels so as to highlight their differences (see text).

2 Excess of corotation torque and entropy gradient

We first present the results of an illustrative calculation with a q = 2.2 × 10−5 planet to primary mass ratio
(corresponding to a Mp = 7.3 M⊕ planet mass if the central object has a solar mass). The planet is held on
a fixed circular orbit, at r = rp, and our reference frame corotates with the planet. Two calculations were
performed: an adiabatic and an isothermal one. For both calculations, the unperturbed pressure p0 and surface
density Σ0 are power laws of the radius, respectively with index λ and σ: p0(r) ∝ r−λ and Σ0(r) ∝ r−σ. The
initial entropy S0 therefore scales as rγS , with S = σ − λ/γ. For this example, we took σ = 0.5 and λ = 1.1, so
that S ∼ −0.3.

Figure 2 displays the gas entropy, pressure and surface density obtained with the adiabatic calculation,
after 25 planet orbital periods. Each panel represents the relative perturbation of the corresponding quantity
with respect to the unperturbed state. For instance, the left panel shows [S(r, ϕ) − S0(r)]/S0(r), with r and
ϕ the polar coordinates. While the azimuthal range spans the whole [0, 2π] interval, the radial range depicted
is restricted to a band of width 2.5xs around the corotation radius, where xs denotes the half-width of the
planet’s horseshoe region. Streamlines are overplotted to the entropy panel to give an idea of the extent of the
horseshoe region. The vertical dashed line represents the corotation radius rc. Whereas the pressure panel does
not display any significant perturbation, the entropy and density panels show the propagation of a perturbation
inside the horseshoe region, which slides along the separatrices.

The interpretation of this dynamics is as follows: the entropy of the fluid elements is conserved as they
perform a horseshoe U-turn in the co-orbital region. When there is initially an entropy gradient at corotation,
the co-orbital dynamics yields an entropy perturbation that has a sign opposite of that of the entropy gradient
on the outwards U-turns, and the sign of the entropy gradient on the inwards U-turns. In the example shown
here, there is initially a negative entropy gradient at corotation: the co-orbital dynamics yields a positive entropy
perturbation at ϕ < ϕp and a negative entropy perturbation at ϕ > ϕp. Since the pressure field is only weakly
perturbed, the entropy perturbation is related to a density perturbation of opposite sign and, in relative value,
of same order of magnitude. Baruteau & Masset (2007) showed that these perturbations arise only in adiabatic
disks, where a non-vanishing entropy gradient induces a singularity in the entropy and surface density fields
at corotation, while the pressure field is continuous. This contact discontinuity, as we shall call it, is simply
advected by the flow: here, it follows the horseshoe dynamics and it remains confined to the horseshoe region.
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Fig. 2. Relative perturbations of the gas entropy, pressure and surface density, at t = 25 orbital periods, obtained
with the adiabatic calculation. In this polar framework, the planet is located in r = rp, ϕ = ϕp. In the left panel,

streamlines are overplotted and the vertical dashed line stands for the corotation radius. In the middle and right panels,

the color scale is adjusted to highlight the advection of entropy perturbation in the horseshoe region (see text). The
nearly horizontal overdensity structure at ϕ = ϕp is the protoplanet’s wake.

Such perturbations do not exist in the isothermal situation since neither the entropy is conserved along a fluid
element path, nor is a temperature singularity allowed to appear.

We give hereafter a simple estimate of the relative perturbation of the disk surface density due to the
advection of entropy. We consider a fluid element that performs a horseshoe U-turn from the inner part of the
horseshoe region (where we assume that there is no entropy perturbation, which is true as long as t < τlib/2, τlib

denoting the horseshoe libration time) to the outer part. All physical quantities at the inner (outer) leg of the
horseshoe streamline are denoted by a minus (plus) subscript. Assuming no pressure perturbation, a first-order
expansion yields p± = p0(rc)(1 ∓ λx/rc), where 0 < x < xs is the distance of the streamline to corotation, and
Σ− = Σ0(rc)(1 + σx/rc). On the outer horseshoe leg, the disk surface density is perturbed according to the
entropy perturbation and reads Σ+ = Σ0(rc)(1 + R − σx/rc), where R is the relative perturbation of surface
density at r = rc + x (we assume a symmetric horseshoe U-turn), due to the entropy advection. Entropy
conservation along the fluid element path (S− = S+) leads to:

R = 2
x

rc

(
σ − λ

γ

)
= 2

x

rc
S. (2.1)

The horseshoe U-turn that we have considered lags the planet (ϕ < ϕp). A similar conclusion holds for a
horseshoe U-turn that switches from the outer leg to the inner one (at ϕ > ϕp), hence we finally have:

R(x) = 2xS/rc, ∀x ∈ [−xs, +xs]. (2.2)

We display in Fig. 3 the slices of the perturbed density field of Fig. 2c, for ϕ − ϕp = 1 (diamonds) and
ϕ − ϕp = −1 (stars). The two horizontal dashed lines display the values of R(−xs) and R(xs), where xs is
estimated through a streamline analysis. Similarly, the long-dashed curve shows R(x) = 2xS/rc, which is in
correct agreement with the calculation results. The surface density structure in the horseshoe region is therefore
dictated by the sign of S. In particular, we do not expect any contact discontinuity when S = 0, which we
checked with appropriate calculations.

We now examine the impact of the contact discontinuity on the corotation torque. The left panel of Fig. 4
shows the total torque exerted on the planet, as a function of time, obtained with the adiabatic and isothermal
calculations. The dashed curve depicts the isothermal torque rescaled by a factor γ−1. It corresponds to the
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Fig. 3. Slices of the relative perturbed density field depicted in Fig. 2c, at ϕ − ϕp = 1 (diamonds) and ϕ − ϕp = −1

(stars). The two horizontal dashed lines refer to the values of R(−xs) and R(xs), while the long-dashed curve displays
the quantity 2(r − rc)S/rc (see text and Eq. (2.2)).
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Fig. 4. Total torque exerted on the planet, obtained with the adiabatic and isothermal calculations, for S ∼ −0.3 (left
panel) and S ∼ 0.3 (right panel). The dashed curve represents the isothermal torque divided by γ, and the vertical arrow

displays the torque excess (see text).

torque expected in the adiabatic situation when discarding the surface density perturbation due to the contact
discontinuity (see section 1). The adiabatic calculation displays a significant, positive torque excess after a few
orbits. This torque excess accounts for the excess of corotation torque due to the contact discontinuity. It
contributes in this exemple to reduce the total torque by as much as a factor of two.

Furthermore, the right panel of Fig. 4 displays the results of two additional isothermal and adiabatic calcu-
lations performed with S ∼ 0.3. As expected, the torque excess is this time negative, and its absolute value is
very close to the one obtained with S ∼ −0.3. This suggests that the torque excess scales with S, hence with the
initial entropy gradient at corotation. To check this expectation, we have undertaken a number of calculations
with different values of S, with the same planet to primary mass ratio. Each entropy gradient is realized with
different combinations of the indexes of the pressure and density power laws (λ and σ). We calculate the torque
excess by substracting the total torque of an adiabatic and an isothermal calculation, the isothermal torque
being rescaled by γ−1. The left panel of Fig. 5 confirms that the torque excess essentially scales with the initial
entropy gradient.

The results of our calculations show that a negative entropy gradient yields a positive excess of corotation
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torque in an adiabatic disk, which slows down type I migration. If the entropy gradient is sufficiently negative,
the torque excess can be positive enough to yield a positive total torque, thereby reversing the migration process.
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Fig. 5. Left: Torque excess as a function of S . Although the calculations display some scatter for a given value of S , the

different points can be considered as aligned within a good level of accuracy. The slope of the dependence is negative.

Right: Contact discontinuity contribution to the corotation torque. It is evaluated numerically with Eq. (3.4). The
cumulative series (plus signs) tends to a value that is in excellent agreement with the contact discontinuity contribution

obtained with numerical simulations, calculated as
∫
disk

(Σ1 − p1/c2
s) ∂ϕΦ rdrdϕ (long-dashed curve).

3 Connection to analytics

We now aim at comparing the results of our calculations with analytical predictions. Namely, we study the linear
response of an adiabatic disk to a rotating perturbing potential Φ(r, ϕ). Combining the Euler, continuity and
energy (entropy) equations leads to a second-order differential equation for the perturbed1 quantity Ψ = p1/Σ0,
as a function of Φ and its radial derivatives. We calculate the rate of angular momentum exchanged by the disk
and the perturber at the corotation radius rc. This rate defines the corotation torque2 ΓC. In the vicinity of
corotation and assuming that Φ is real, the corotation torque takes the form3 ΓC =

∑
m ΓC,m with:

ΓC,m = mπr2
cΦ(rc)

∫ ∞

−∞
dx Im[Σ1(x)], (3.1)

where x = (r − rc)/rc. As in Goldreich & Tremaine (1979), we assume that the disk responds to a slowly
increasing perturbation. Linearizing the energy equation leads to:

Σ1(x) =
p1(x)

c2
s,adi(rc)

− (x + iε)−1
[
2FS(Φ+Ψ)

r3dΩ/dr

]

rc

, (3.2)

where ε is an arbitrarily small positive quantity, F ≈ Σ0Ω/κ2, Ω denotes the disk’s rotation profile, κ the
epicyclic frequency. Each term of the r.h.s. of Eq. (3.2) yields a contribution to the corotation torque:

- the contribution of p1/c2
s, denoted ΓC,m,1. This contribution is calculated as the jump at corotation of

the advected angular momentum flux (Tanaka et al. 2002). Its expression, that features Ψ(rc), reads:

ΓC,m,1 =
[
Γ0 {V + 2S} |Φ+Ψ|2 − Γ0 SΦRe(Φ+Ψ)

]
rc

, (3.3)

where Γ0 = −(mπ2Σ0)/(2BrdΩ/dr) > 0, B = κ2/4Ω and V ≡ d ln(Σ0/B)/d ln r.

1Unperturbed (perturbed) quantities are referred to with a zero (one) subscript.
2Hereafter the torque means the torque exerted by the disk on the perturber.
3The subscript m in the perturbed quantities is skipped to improve legibility.
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- the contribution of the second term, denoted ΓC,m,2. In the limit ε → 0, this term corresponds to a
singularity at corotation (the so-called contact discontinuity of previous section). It reads:

ΓC,m,2 = − [Γ0 S ΦRe(Φ+Ψ)]rc
. (3.4)

The corotation torque therefore reads:

ΓC,m =
[
Γ0 {V + 2S} |Φ+Ψ|2 − 2Γ0 SΦRe(Φ+Ψ)

]
rc

. (3.5)

This expression reduces to the formula of Tanaka et al. (2002) when S = 0, and to that of Goldreich & Tremaine
(1979) in the limit of a cold disk (Ψ(rc) , Φ(rc)).

This linear analysis leads to the following comments:

1. The torque excess, which we denote by E, reads: E = ΓC,m − [Γ0 V |Φ + Ψ|2]rc . Assuming that 0 ≤
Ψ(rc) ≈ −Φ(rc), E can be recast as: E ≈ −2[SΓ0ΦRe(Φ + Ψ)]rc . The torque excess does scale with
−S(rc), as inferred from our results of calculations (see left panel of Fig. 5).

2. We have given at Eq. (3.4) an estimate of the singular torque contribution from the contact discontinuity
at an isolated resonance. We now compare the sum over m of this torque expression with the total contri-
bution in the planetary case of the contact discontinuity, evaluated as: Γcd =

∫
disk(Σ1−p1/c2

s) ∂ϕΦ rdrdϕ.
For this purpose, we have adopted a planet to primary mass ratio q = 5× 10−6, as the one adopted in the
previous section (q = 2.2 × 10−5) led to poor agreement, presumably because of the onset of non-linear
effects. For each azimuthal wavenumber m, we measure .(Ψm) from the calculation output (at t = 5 Torb),
and we evaluate the sum over m of the torque Γc,m,2: Γ∞ = limk→+∞ Γ′

k, where:

Γ′
k = −4π2

3

[
SΣ0

Ω2

]

rc

m≤k∑

m=1

mΦm[Φm + .(Ψm)] (3.6)

is the partial sum of Γc,m,2. We compare Γcd to Γ∞ in the right panel of Fig. 5. The agreement between the
result of our calculation and the linear estimate is excellent, which confirms that the contact discontinuity
is essentially a linear effect.

4 Conclusion

We investigate in this communication the type I planetary migration in an adiabatic disk. When the initial
entropy gradient at corotation cancels out, the torque of an adiabatic calculation is reduced by a factor of γ with
respect to an isothermal calculation. When a non-vanishing entropy gradient is taken into account, a singularity
appears in the entropy and surface density fields at corotation, which yields an additional contribution to the
corotation torque. The close agreement between the results of our calculations and linear analysis shows that
this effect is essentially a linear one. The excess of corotation torque scales with the initial entropy gradient
at corotation: if the latter is sufficiently negative, the torque excess can be positive enough to reverse the
migration.
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