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ON THE STABILITY OF SELF-GRAVITATING FILAMENTS
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Abstract. Filamentary structures are very common in astrophysical environments and are observed at
various scales. On a cosmological scale, matter is usually distributed along filaments, and filaments are also
typical features of the interstellar medium. Within a cosmic filament, matter can possibly contract and form
galaxies, whereas an interstellar gas filament can clump into a series of bead-like structures which can then
turn into stars. To investigate the growth of such instabilities and the properties of the resulting substruc-
tures, we consider idealized self-gravitating filaments and derive the dispersion relation for perturbations
within them. We assume no specific density distribution, treat matter as a fluid, and use hydrodynamics to
derive the linearized equations that govern the growth of perturbations. Assuming small local perturbations
leads to a dispersion relation analogous to the spherical Jeans case: perturbations of size higher than the
Jeans length collapse and asymmetries regarding their growth rates arise only because of rotation. For
perturbations of arbitrary size, the dispersion relation retains its complex terms: all modes are potentially
unstable, but elongated perturbations near the axis of the cylinder grow faster. Prolate substructures and
global collapse are favored, which is corroborated by most observations of interstellar filaments.
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1 Introduction

Although filaments have been observed since decades within molecular clouds (e.g., Schneider & Elmegreen
1979), cosmological simulations and high-resolution observations of the interstellar medium only recently showed
the key role played by filamentary structures at various scales in astrophysics. Filamentary structures are indeed
ubiquitous and involved in processes as varied as gas accretion onto galaxies and the formation of stars in the
interstellar medium.

On cosmological scales, matter is usually distributed along filaments, forming a cosmic web that connects
galaxies to one another (e.g., Bond et al. 1996) and provides a gas reservoir from which galaxies grow and accrete
(e.g., Kereš et al. 2005; Dekel et al. 2009). The inner core of many of these filaments may be predominantly
made of gas, as notably shown by simulations by Harford et al. (2008), motivating models which treat them as
self-gravitating, isothermal or barotropic cylinders in hydrostatic equilibrium.

In the interstellar medium, observations show filamentary structures on much smaller scales (e.g., André
et al. 2010; Arzoumanian et al. 2011). Motivated by Herschel observations of star-forming environments, André
et al. (2010) suggest a scenario in which the formation of turbulence-driven filaments in the interstellar medium
represents the first step towards core and star formation. The densest filaments would then fragment into
pre-stellar cores owing to gravitational instability. Simulations reveal filamentary features arising either from
turbulence (e.g., Padoan et al. 2001) or from intermediate stages of gravitational collapse (e.g., Gomez &
Vazquez-Semadeni 2014).

2 Studying the growth of instabilities through linearized equations

The standard Jeans instability describes the collapse of a spherical gas cloud when the inner pressure is not
strong enough to support the self-gravitating gas. The cylindrical case is more complicated and has not been
fully investigated yet. Our goal is to obtain a dispersion relation for small perturbations arising in an idealized
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filament in order to better understand the behavior of such perturbations, and to compare their properties
with available observations and simulations. In order to do so, we derive the linearized dynamical equations
that govern the perturbations and obtain the resulting dispersion relation, first for local perturbations within a
rotating filament (section 3), and then for perturbations of any extent within a non-rotating filament (section 4).

Our idealized picture consists of an infinite self-gravitating cylinder with pressure and density related by a
barotropic equation of state. We neglect the role of magnetic fields for simplicity, treat matter as an inviscid fluid
and use hydrodynamics to obtain the linearized equations that govern the perturbations. Cylindrical symmetry
involves no dependance on the axial and azimuthal coordinates z and φ for the unperturbed system, and we
only consider axisymmetric perturbations. The unperturbed system is assumed to be at equilibrium, and we
further assume that all fluid particles share the same initial axial velocity, ~v0(R,φ) = RΩ0(R) ~eφ, where Ω0(R)
is the undisturbed angular velocity, ~eφ the azimuthal unit vector and R the radial distance. The calculations
are valid for any density profile ρ0(R), and the unperturbed gravitational field Φ0(R) is set by the Poisson
equation.

Assuming axisymmetric perturbations of the generic form e−iωteikRReikzz and introducing Oort constant
B(R) = − 1

2

[
Ω0(R) + ∂

∂R (RΩ0(R))
]
, the dynamics of the perturbed system is determined by the following set

of linearized first-order equations, where the infinitesimal disturbances are denoted by an index 1 while an index
0 corresponds to the unperturbed system (e.g., Mikhailovskii & Fridman 1973):
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− k2zΦ1 = 4πGρ1. (2.5)

These equations correspond respectively to the three projections of the equation of motion, the continuity
equation, and the Poisson equation. The linearized barotropic equation of state yields for its part an enthalpy
perturbation

h1 = c20
ρ1
ρ0

(2.6)

where c0(R) is the effective sound speed, defined by c20 = ∂p0/∂ρ0 and potentially varying with radius. The
pressure support could be thermal as well as turbulent.

3 Local perturbations in a rotating filament

We first assume local perturbations: the typical scale of the perturbation is small compared to that of the
unperturbed quantities, i.e., kRR0 >> 1, where R0 is the typical radius for the unperturbed distribution. This
assumption is analogous to the Wentzel-Kramers-Brillouin approximation (WKB) used in quantum physics and
leads to the following local dispersion relation (Freundlich et al. 2014):

ω4 + ω2
(
4πGρ0 − c20k2 − κ2

)
+ κ2k2z

(
c20 −

4πGρ0
k2

)
= 0 (3.1)

where k =
√
kR2 + kz2 corresponds to the total wavenumber and κ(R) is the epicyclic frequency, defined by

κ2 = −4Ω0B. ρ0(R) and c0(R) are respectively the initial density distribution and the effective sound speed.
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This polynomial equation can be treated as a second order polynomial expression in ω2 and it can be shown
that its two roots ω2

− and ω2
+ are real, with ω2

− < ω2
+ and ω2

+ ≥ 0. The system is thus globally stable to
axisymmetric perturbations when ω2

− > 0 and unstable when ω2
− < 0, as growing modes require a non-zero

imaginary part. Rotation generates asymmetries in the distribution of ω2
− in the phase plane (kR, kz) but the

induced boundary between the stable and unstable regimes is symmetrical: the system is stable when k2 > kcrit
with kcrit = 4πGρ0/c

2
0, and unstable below, which corresponds to the standard Jeans criterion. When there is

no rotation, the dispersion relation further reduces to the standard dispersion relation for collapsing spherical
systems. Figure 1 shows an illustrative example of the distribution of ω2

− for a rotating filament, where the
asymmetries generated by rotation and the symmetrical boundary between stable and unstable regimes in the
phase plane (kR, kz) are visible.

Fig. 1. As an illustrative example, we model a filament from the Taurus molecular cloud, TMC-1, with a Plummer-like

density profile (Malinen et al. 2012) and plot the resulting distribution of ω2
− in the planes R = R0, kR = 0.2k0, and

kz = 0.2k0, where k0 =
√

4πGρc/c0 is a characteristic wavenumber depending on the central density ρc. Negative values

of ω2
− correspond to an unstable filament, and the solid black curve separates the stable and unstable regimes (k = kcrit).

The dashed line corresponds to the minimum value of the frequency, i.e., to the most unstable mode.

4 Global perturbations in a non-rotating filament

The local WKB assumption prevents the perturbations feeling the large-scale geometry of the system and thus
leads to the standard spherical Jeans case when there is no rotation. Releasing the WKB assumption should
enable to better understand the specific effects of cylindrical geometry. Without this assumption and for non-
rotating cylinders, the dispersion relation retains its complex terms and all modes are thus potentially unstable:
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(4.1)

Our previous calculations (Freundlich et al. 2014) included rotation. But although signs of rotation such as
transverse velocity gradients are observed for interstellar filaments, and notably for TMC-1 in the Taurus
molecular cloud (Olano et al. 1988), there generally does not seem to be a global coherent rotation of such
filaments (e.g., Falgarone et al. 2001). This is why we restricted our calculations to non-rotating filaments here,
as a first approximation.

As shown in Figure 2, this dispersion relation 4.1 shows that elongated perturbations near the axis of the
filament grow faster, thus favoring elongated substructures. This is corroborated by observations, as most ob-
servations in the Taurus molecular cloud or in other molecular clouds favor prolate structures within interstellar
filaments and tend to show that cores are stretched along the direction of the filaments (e.g., Curry 2002;
Hartmann 2002).
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Fig. 2. Imaginary part of the angular frequency for an idealized filament inspired by TMC-1 in the phase plane (kR, kz)

for three different radii, as derived from equation 4.1. The plotted quantity is a measure of the growth rate of the

perturbations, thus prolate structures with kz < kR are likely to be favored and we expect them to be more elongated

nearest to the center of the filament, as shown by the change with radius of the isocontour lines.

5 Conclusion

We derived a dispersion relation for axisymmetric perturbations in infinite, self-gravitating, gaseous filaments
in two different cases: (i) for perturbations of small extent when the filament is rotating (section 3), and (ii) for
perturbations of any extent when the filament is not rotating (section 4). The gas is assumed to be barotropic,
and the relations are valid for any type of density profile. In the first case, perturbations of size higher than the
Jeans length collapse and asymmetries only arise because of rotation, whereas in the second case, all modes are
potentially unstable but elongated perturbations near the axis of the cylinder grow faster, which is corroborated
by most observations of interstellar filaments.

Our model assumes an infinite and isolated filament, but we could generalize our calculations to a cylinder
of finite size and take into account the effects of the environment and of more complex velocity distributions.
This work should be complemented by more detailed comparisons with observations and by numerical studies
of the formation and subsequent collapse of idealized filaments, which we plan to do in future studies.
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Schneider, S. & Elmegreen, B. G. 1979, ApJS, 41, 87


	Introduction
	Studying the growth of instabilities through linearized equations
	Local perturbations in a rotating filament
	Global perturbations in a non-rotating filament
	Conclusion

