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ARE MILKY-WAY DWARF-SPHEROIDAL GALAXIES DARK-MATTER FREE?
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Abstract. We have found that the high velocity dispersions of dwarf spheroidal galaxies (dSphs) can be
well explained by Milky Way (MW) tidal shocks, which reproduce precisely the gravitational acceleration
previously attributed to dark matter (DM). Here we summarize the main results of [Hammer et al. (2019)
who studied the main scaling relations of dSphs and show how dark-matter free galaxies in departure from
equilibrium reproduce them well, while they appear to be challenging for the DM model. These results are
consistent with our most recent knowledge about dSph past histories, including their orbits, their past star
formation history and their progenitors, which are likely tiny dwarf irregular galaxies.
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1 Introduction

DSphs (including ultra-faint dwarfs, UFDs) in the Milky Way halo are by far the smallest galaxies that can be
detected and studied. They are believed to contain large amounts of DM, which fraction is generally assumed
to increase with decreasing luminosity or stellar mass (Strigari et al. 2008} [Walker et al.|2009; Wolf et al.|2010).
The existence of DM has been widely accepted since the discovery of the Hl-extended and flat rotation curves in
giant spirals (Bosma)|1978)). The extent of the DM paradigm towards the dwarf galaxy regime has been initiated
by |Aaronson! (1983) on the basis of the too large velocity dispersion of the Draco stars. This pioneering result
was only based on 3 stars in Draco, though it has been confirmed by major works that have identified new
dwarfs, measured their distances, and performed deep photometry and high resolution spectroscopy of their
individual stars. During the last 35 years these long term works have provided robust measurements for several
tens of MW dSphs (Munoz et al.|2018;} [Fritz et al.||2018| and references therein).

The scaling relations between the visible luminosity, the half light radius, the velocity dispersion and the MW
distance can be established for 24 dSphs possessing sufficiently robust measurements. Three dSphs (Sagittarius,
Crater IT and Bootes I) are clearly outliers in these relations, which leads to a sample of 21 dSphs. Analyzing
these data, [Hammer et al.|(2019) demonstrated that the MW gravitation through tidal shocks can fully account
for the dSph kinematics. DM estimates (Walker et al.[[2009; Wolf et al.|[2010) are based on only the projected
mass density along the line-of-sight. [Hammer et al. (2019] see their Fig. 1) found that this quantity is highly
anti-correlated with the MW distance, a property that cannot be reproduced by DM-dominated models. It is
however naturally expected if dSphs are tidally shocked during their first passage into the MW halo.

2 DSph progenitors: A first infall of gas-rich dwarfs in the MW?

GATA DR2 is revolutionizing our knowledge of the MW dSphs orbits in a two-fold way:

1. It has considerably improved our knowledge of the MW mass distribution up to 20-50 kpc, by establishing
a more accurate rotation curve (Eilers et al.|[2019; Mroz et al.|2019)), and by providing better constraints
on the Globular Cluster motions (Eadie & Juri¢|2019)) and on the estimates of the escape velocity (Deason
et al.|2019). These studies provide MW masses ranging from 0.7 to 1 x102M, (see however Grand et al.
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for a slightly higher value), and all of them seem to exclude larger masses. Fig.[l|shows the different
rotation curves and mass distributions of the MW, including the most recent ones (Eilers et al.|2019; Mroz|
and the (former) high-mass models (McMillan/[2017; Irrgang et al.|[2013] with total mass from
1.37 to more than 1.9 x10'2M,) adopted by |Gaia Collaboration et al. (2018) during the release of dSph
proper motions. Top panels of Fig. |1 show that high mass models lead to velocities (red and magenta
lines) much higher than that observed (points).

2. The above determined MW mass range allows to calculate accurate orbits that are generally consistent
with a first infall for most dSphs. For example 2/3 of them have eccentricities in excess of 0.66 (such as

the LMC) and half of them with apocenter larger than 300 kpc (Fritz et al.[|2018) when adopting the
(2015) MW mass model that reproduces its kinematics.

300 F 4 . 300

S ol |

& 200 :— —_ £ 200 :

£ 100 4 Eiof

> - ] > -
) 0 +—+—+4+—+—+—+—t+—++3% 0 H
oE: axto" . é : .
5 6x10" | = b 10" :_ _
8 4x10" | =i i -
=0 kb 1~ 5x10° -
a2 2x107 [ ] w2 C N
> E 1¥ E ]
: 0 1 1 I 1 1 1 I 1 1 1 E D

0 20 40 0 50 100 150
R (kpe) R (kpe)

Fig. 1. Top left: Rotation curve of the MW. Black and cyan points represent the new determinations by
using massive stars, and by using cepheids, respectively. The green line shows the
model, the red line represents the model for which they have multiplied the halo mass by 2, and the
blue line shows the model of Bottom left: MW mass profile, same symbols as in the top left panel. Top
right: Extended rotation curve of the MW. Black and cyan points with error-bars represent compilations from
let al.| (2016) and [Bhattacharjee et al|(2014), respectively. As in the left panels, the green, red and blue lines show the
model, the model for which they have multiplied the halo mass by 2, and the
model, respectively. The magenta (full and dotted) lines show the models of [McMillan|[2017| and |Irrgang et al.|[2013|
respectively. Bottom right: MW mass profile, same symbols as in the top right panel.

DSph progenitors are likely gas-stripped dwarfs due to the ram-pressure caused by the MW halo gas as
it has been proposed by [Mayer et al| (2001). Observations support this scenario because all dwarfs (but the
Clouds) are gas-rich beyond 300 kpc and gas poor within 300 kpc (Greevich & Putman|[2009). The gas removal
by ram-pressure induces a lack of gravity implying that stars are then leaving the system following a spherical
geometry. Such a geometry ensures the dominance of tidal shocks over tidal stripping (Binney & Tremaine|
2008)) explaining the absence of tidal features in most dSphs (Hammer et al.[2019). MW tidal shocks increase
the square of the velocity dispersion by o2jwoae = V2 MW MW Thalt Where gyrw is the MW gravitational
acceleration and ayw = 1 — dlog(Mmw)/0log(Dyw) (Hammer et al.|[2018). This property reproduces quite
precisely the observed dSph velocity dispersions as well as the fundamental relationships established from the
observations (see Figs. 1-3 and 5-7 in Hammer et al|2019).

The role of the gas during the process is essential. First, it would be very unlikely that dSphs progenitors
were without gas since such objects are extremely rare in the field. Second, DM-devoid models made by
(1995) assumed gas-free progenitors, which implies a strong dominance of tidal stripping. There are
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similar models (Kroupa et al.[1997; [Klessen & Kroupal[1998; Iorio et al.[2019) that also assumed multiple orbits
furthermore limiting the possibility that tidal shocks affect the dSph velocity dispersions.

3 Discussion and Conclusion
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Fig. 2. Self-gravity acceleration apy = (Jfosfagtars) X r}:allf derived from DM estimates in dSphs compared (in logarithmic
scale) to that due to MW tidal shocks, amMwshocks = V2 anw gmw . The left and the right panel show the relation for

an adopted MW mass profile from (2015) and from (2015)), respectively. Full (open) dots represent classic

(non-classic) dSphs, respectively. Leo I and II are identified by points with magenta color since they do not fully obey

the impulse approximation (see [Hammer et al|[2019)). Their location in the Figure can be well explained if they are

affected by tidal stripping in addition to tidal shocks.

The DM content of dSphs derived by [Walker et al.| (2009) and by Wolf et al.| (2010) comes from the measure-
ment of the dSph-DM self-gravity acceleration projected along the line of sight, which is apy = GMpy X rgjf =
(02, — 02 ars) X Tpais- [Hammer et al| (2019) showed that over more than a decade, apy matches very well with
the acceleration caused by MW tidal shocks on DM-free dSphs, which is aywshocks = V2 anw guw (see Fig. .
Why would the acceleration caused by the DM be precisely what it is expected from MW tidal shocks on DM-free
dSphs? Why do MW tidal shocks predict that the DM mass-to-light ratio of Segue 1 is several thousand, while
that of Fornax is around ten? The acceleration caused by the DM (apy) also strongly anti-correlates with the
dSph distance from the MW (Hammer et al.|2019, see their Fig. 1). The probability that this is just a coincidence

is only 3x10~%, which can be conservatively considered as the chance that DM impacts the kinematics of dSphs.

We are aware that the above could seriously affect the paradigm of DM in MW dSphs, and then have an
impact on the cosmological models, except if MW dSphs are not representative of the dwarf regime. It is not
unexpected that these results would be met with some skepticism. Could this be contradicted by other prop-
erties, e.g., of their progenitors that are likely dwarf Irregulars (dIrrs)? The DM content of dIrrs that share a
similar stellar mass range than dSphs is still not well constrained. The most massive dSph (e.g., Fornax and
maybe Sculptor) progenitors can be found, e.g., in the smallest galaxies of the sample from [Lelli et al.| (2016)),
which includes the best studied rotation curves over a large mass range. The DM content of these small galaxies
that are all dIrrs has been derived from their rotation curves and varies from none to large values, in particular
within a radius similar to the half light radius that is adopted for sampling dSph dynamical properties (Walker
et al[2009; Wolf et al.|2010; Hammer et al|2019). It appears very hard to assess rotation curves and velocity
amplitudes in dwarf galaxies that are too irregular. Trying to identify possible progenitors of smaller dSphs
(e.g., UFDs) that constitute the bulk of dSphs leads one to consider extremely small dIrrs, for which establishing
their rotation curves can not be seriously attempted (McNichols et al.|[2016; Oh et al.|2015; |Ott et al|2012).
This is because these tiny objects are far from being represented by a thin disk geometry and also because their
velocity amplitudes are similar to that of their dispersion, the latter being mostly associated to star formation

and turbulence (Stilp et al.|[2013).

Star formation histories of dSphs have been well studied especially for the most massive ones (Weisz et al.
2014). For Fornax (de Boer et al[[2013) it is consistent with a recent gas removal by ram-pressure and then
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with the tidal shock scenario. While this also applies to Carina, Leo I and perhaps to Leo II, past histories
of Sculptor, Sextans, UMi and Draco (Weisz et al.|[2014]) are perhaps more problematic. Why did the star
formation in the Sculptor progenitor stop about 5 Gyr ago (de Boer et al.|[2012) if it was still in isolation at a
later time? Only a full hydrodynamical simulation with a well determined orbital history for Sculptor would
help us to verify a potential inconsistency. Interestingly, recent simulations (Garrison-Kimmel et al.[2019)) have
shown that gas-rich dwarfs with Sculptor stellar mass and in isolation may have similar star formation histories
than Sculptor, and this also applies to galaxies with smaller masses that form the bulk of the MW dSphs.

The above may lead to a significant change of paradigm in our understanding of the MW dSphs, which could
impact the determination of the lower end of the galaxy mass function. Next steps will be to verify if this is
consistent with other dSphs of the MW, which total mass can be robustly determined without extrapolations.
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