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Abstract. Gas giant planets are differentially rotating magnetic objects that have strong and complex
interactions with their environment. In our Solar system, they interact with their numerous moons while
exoplanets with very short orbital periods (hot Jupiters), interact with their host star. The dissipation of
waves excited by tidal forces in their interiors shapes the orbital architecture and the rotational dynamics
of these systems. Recently, astrometric observations of Jupiter and Saturn systems have challenged our
understanding of their formation and evolution, with stronger tidal dissipation in these planets than previ-
ously predicted, in contrast to what appears to be weaker in gas giant exoplanets. These new constraints
are motivating the development of realistic models of tidal dissipation inside these planets. At the same
time, the Juno and Cassini space missions have revolutionised our knowledge of the interiors of Jupiter and
Saturn, whose structure is a combination of stably stratified zones and convective regions. In this work, we
present results of hydrodynamical calculations modelling tidal waves and their dissipation in Jupiter, taking
for the first time the latest, state-of-the-art interior model of the planet. We performed 2D numerical sim-
ulations of linear tidal gravito-inertial waves that propagate and dissipate within Jupiter interior by taking
into account viscous, thermal and chemical diffusions. This new model allows us to explore the properties
of the dissipation and the associated tidal torque as a function of all the key hydrodynamical and structural
parameters.
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1 Introduction

Tides dissipate energy through various mechanisms, such as turbulent friction and heat diffusion (e.g. |Ogilvie
2014; |Mathis||2019). This dissipation impacts the evolution of planet-moon systems. Jupiter and Saturn display
unexpectedly strong tidal dissipation, driving rapid orbital migration revealed by precise astrometric data
(Lainey et al.[2009, 2012, [2017, [2020). For example, [Lainey et al.| (2009) determined a tidal dissipation rate of
koa/Q = (1.1 £0.2) x 1075 [*{ for Io’s asynchronous tide. This is one order of magnitude stronger than previous
theoretical predictions based on moon formation scenarios (Goldreich & Soter||[1966). In addition, the space
missions Juno and the grand finale of the Cassini mission have completely changed our vision of the interiors
of Jupiter and Saturn (Wahl et al.| 2017} |Guillot et al.|[2018; |Galanti et al|[2019). They revealed that these
planets are structured by a central stably stratified core, a convective metallic shell, a potential intermediate
stable layer in the case of Jupiter, and an outer differentially rotating molecular convective envelope. These
new constraints motivate the development of realistic models of tidal dissipation inside these planets. That
is why we develop a method to compute the dissipation of the dynamical tidal response of a self-gravitating,
rotating fluid body composed of alternating convective layers and stably stratified layers (i.e. tidally-excited
gravito-inertial waves; see also |Lin|2023; Dewberry|2023|) and which takes into account the viscous, thermal and
chemical dissipation processes. We focus here on the latest Jupiter interior models built by Debras & Chabrier
(2019), which matches constraints obtained by the Juno space mission.
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*kom is the tidal Love numbers which quantitatively characterises the planet’s adiabatic hydrostatic response to the (¢,m)
component of the tidal forcing, where £ and m are the latitudinal degree and azimuthal order of the corresponding spherical
harmonics. @ is the tidal quality factor which evaluates the ratio between the maximum energy stored in the tidal distortion and
the energy dissipated during an orbital period.
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2 Tidally forced waves in gas giant planet interiors

We investigate the linear excitation of (gravito-)inertial waves induced by external tidal forces. The dynamics
of these waves are governed by Coriolis acceleration and buoyancy in stable layers and they undergo dissipative
processes (assumed to be uniform here), namely viscosity (v), thermal diffusion (), and molecular diffusion
(D,). First, we linearise the hydrodynamic system around the hydrostatic steady-state. Each scalar field
X = {p,®,T, u,P}Iﬂ is expanded as the sum of its hydrostatic value Xy and of the Eulerian perturbations
associated with the tides X': X (r,0,p,t) = Xo(r) + X'(r,0,,t) and the velocity field, V, is expanded as the
sum of the large-scale azimuthal velocity associated with the uniform rotation QE| and of the wave velocity v
V(r,@,@,t) = rsinfQe, + v(r,0,p,t), where t is time and (7,6, ) are the usual spherical coordinates with
their associated unit vector basis (€, €, €,). Afterwards, we decompose the fluctuations associated with the
tides into non-wavelike and wavelike parts: ¥ = Y™ + YV, where Y = {v,,v9,v,, X'}, Y™ is the non-
wavelike (equilibrium) tide that satisfies the hydrostatic equilibrium, and Y% the wavelike (dynamical) tide
that describes the propagation of tidal waves. The forcing term (f“™) arises when solving the wavelike tide as a
residual force coming from the subtraction of the hydrostatic balance verified by the non-wavelike tide from the
complete momentum equation (Ogilvie[2014). This force encompasses the acceleration of the non-wavelike tide
and the Coriolis acceleration applied to it, which forces the (gravito-)inertial tidal waves. Finally, by assuming
Boussinesq and Cowling approximations as a first step and by expanding on (vectorial) spherical harmonics

(Rieutord, 1987) the velocity field (uj*, v}, w}"), temperature (t}*), molecular weight (uj), reduced pressure

(py*) and the forcing vector ( é’m, é’m, {:’m), we can write the dimensionless system that describe the wavelike
tides as :
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where @ is the normalised tidal forcing frequency, gg is the normalised gravitational acceleration, N,ﬁ*2 = N2 /40?2
is the normalised Brunt-Vaisila frequency linked to the thermal stratification squared, N ;2 =N EL /4902 is the
normalised Brunt-Vaiséla frequency linked to the chemical stratification squared, and
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We define also the following dimensionless numbers : the Prandtl number Pr = v/, the Schmidt number
Sc =v/D,, and the Ekman number E = v/ 2QR2|§| (the ratio between the viscous force and the Coriolis force).

Tp, ®, T, p and P are the density, the gravitational potential, the temperature, the mean molecular weight, and the pressure,
respectively.

TAs a first step we neglect differential rotation, since Jupiter’s relative differential rotation is 4% (Guillot et al.|[2018).

$R is Jupiter’s radius.
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3 Jupiter’s interior model matching the constraints provided by Juno

The internal structure model that we consider here is computed by Debras & Chabrier| (2019); Chabrier &/
to reproduce Jupiter’s multipolar gravitational moments as measured by Juno. As illustrated in
Fig.[I] starting from its surface and moving towards the core, Jupiter is thought to exhibit the following layers :
a gaseous convective envelope, a transitional stably stratified zone considered to be potentially semi-convective,
an internal convective zone composed of metallic hydrogen and helium, a stably stratified zone located closer to
the core which may exhibit double diffusion convection or a diluted core structure due to stabilising composition
gradients, and a potential unstable solid core of size 1.4% of the radius made up of rock or ice

R 2
Ny

B Stably stratified zone
Convective zone
I solid core

r/R

Fig. 1. Left: Radial profiles of the normalised compositional (N7), thermal (N?), and total (N?) buoyancy frequencies
squared of Jupiter’s interior used in this study. Right: Schematic of this model.

4 Dissipation spectra and imaginary part of the Love number

We solve the syst- numerically using the 2D pseudo-spectral linear code LSB (Linear Solver Builder,
[Valdettaro et al|2007). These equations are discretised in the radial direction on the Gauss-Lobatto collocation
nodes associated with the Chebyshev polynomials. They are truncated to order N, for the Chebyshev basis
and to order N, for the spherical harmonics basis. We specifically investigate the quadrupolar tidal components
(¢ =m = 2). The top panel of the Fig.shows the viscous (Dyisc ), thermal (Dyy ), molecular (Dgy,) and total (D)
dissipation rates integrated over the volume as a function of the normalised forcing frequency (&) for E = 10=7
and Pr = Sc = 1. We observe a significant frequency dependence, indicating a strong relationship between
dissipation and forcing frequency. Moreover, for our set of E, Sc and Pr, the dominant mechanism contributing
to dissipation is viscosity, surpassing both thermal and chemical dissipations in magnitude. We also represent
the dissipation spectra for the standard vision of Jupiter’s interior before Juno’s results, where there is a single
purely convective zone extending from r =7 = 0.014 to r = 1. We can see that the spectra in this case exhibit
a smooth profile with weaker magnitude, devoid of any pronounced peaks at specific frequencies. The bottom
panel of Fig.[2|shows significant discrepancy between computed values of the imaginary part of the Love number
due to To and the observed ones, differing by roughly two orders of magnitude. Consequently, our calculations
tend to overestimate the amplitude of tidal dissipation. Conversely, when examining the purely convective
model, we observe an underestimation of tidal dissipation by approximately one and a half orders of magnitude.
This shows the key role played by stably stratified layers in controlling the strength of the dissipation.

5 Conclusions

We examine the dissipation of dynamical tides in the latest Jupiter interior multi-layer model with alternating
convective and stably stratified regions. We take into consideration various types of dissipations such as turbu-
lent viscosity, thermal dissipation, and molecular diffusivity. This enables a more comprehensive and realistic

INote that as a first step, we neglected in this study the differential rotation in the outer convective region and the magnetic
field in the internal one.
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Fig. 2. Dissipations (Top) and imaginary part of the Love number (Bottom) as a function of the tidal frequency for
m =2 Pr=Sc=1,E=10"" and (N,, N¢) = (300, 301). The magenta dashed line indicates the values of these
quantities in the case of a purely convective interior. Vertical dotted lines indicate the tidal frequencies for the four

Galilean Moons of Jupiter. The dash-dotted orange line marks the observed value due to Io (Lainey et al.|[2009).

representation of the physical processes occurring within giant gas planets’ interiors. We find that the presence
of stably stratified regions plays a significant role in explaining the strong dissipation observed in Jupiter when
compared to the case of a sole convective envelope. It is important to note that our model is not limited to
Jupiter but can also be applied to other giant planets such as Saturn, as well as exoplanetsm
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