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A BAYESIAN APPROACH TO GRAVITATIONAL LENS MODEL SELECTION
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Abstract. Over the past decade advancements in the understanding of several astrophysical phenomena
have allowed us to infer a concordance cosmological model that successfully accounts for most of the obser-
vations of our universe. This has opened up the way to studies that aim to better determine the constants of
the model and confront its predictions with those of competing scenarios. Here, we use strong gravitational
lenses as cosmological probes. Strong lensing, as opposed to weak lensing, produces multiple images of a
single source. Extracting cosmologically relevant information requires accurate modeling of the lens mass
distribution, the latter being a galaxy or a cluster. To this purpose a variety of models are available, but
it is hard to distinguish between them, as the choice is mostly guided by the quality of the fit to the data
without accounting for the number of additional parameters introduced. However, this is a model selection
problem rather than one of parameter fitting that we address in the Bayesian framework. Using simple test
cases, we show that the assumption of more complicate lens models may not be justified given the level of
accuracy of the data.
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1 Introduction

Over the past years, our understanding of the universe has greatly improved. The concordance model explains
most of the cosmological observations. We have now entered a phase where finding new observational ways of
measuring the constants of this model as well as confronting predictions with those of competing scenarios is
crucial to further advance the research in cosmology. Strongly lensed quasars constitute such a cosmological
probe.

In a strong gravitational lens, each image is the result of a different light-path. As a result, if the source
behind the lens has a variable luminosity, as quasars do, it will manifest with a time delay between the two
images.

This time delay ∆t depends on the gravitational potential of the lens, and the underlying cosmological
model.

The time delay between two images A and B is:

∆tA,B = (1 + zl)
dlds
dls

(
1

2
((θA − β)2 − (θB − β)2) + ψ(θA)− ψ(θB)

)
(1.1)

where ∆tA,B , zl, θA and θB are observables, β, ψ(θA) and ψ(θB) depend on the lens model and dl, ds and dls
depend on cosmology.

Using the above relation, we can derive constraints on cosmological parameters, provided we assume a lens
model. Time delays are particularly sensitive to the value of the Hubble constant H0.

Unfortunately, a change in the lens model can shift the inferred value of H0 by a factor of two. Hence, the
modeling of the lens, as well as a robust discrimination between lens models, is critical to the study of time
delays.

Here, we first discuss the lens models used in our study, then describe our methodology based on Bayesian
statistical analysis, and finally present our results.
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2 Numerous Lens Models

A large number of lens models have been proposed in a vast literature. Given the fact that observables are
limited to the position of the images, their time delay and their flux ratio (or magnification), we restrict our
analysis to simple examples characterized by a few parameters. In particular we consider two models for lenses
with two images, so called “double” lenses (for a review on lensing, see Kochanek (2006)).

1. Power-law model: assume a density profile % ∝ r−n, with n a free parameter. For n = 2, it describes an
isothermal lens. In order to assess the dependance on the prior parameter interval we assume two different
priors: 0 < n < 3 (large) and 1 < n < 3 (small).

2. Power-law model with external shear: assume the previous model with the addition of shear accounting for
environmental effect on the lens. This adds two parameters: the strength of the shear γ, and its direction.
Expected values for the shear vary up to γ ' 0.1, therefore we assume three different priors on γ: γ < 0.1,
< 0.2 and < 0.5 respectively. This allow us to test the shear strength up to nearly unrealistic values.

3 Our method

To discriminate between different models, we use the Bayes’ factor. The reader can find a more complete review
on that subject in Trotta (2008), but it seems useful here to remind a few facts on Bayesian analysis.

Bayesian statistical analysis derives from Bayes’ theorem:

P (A|B, I) =
P (B|A, I)P (A|I)

P (B|I)
(3.1)

A well known application of this theorem is parameter estimation. If we take A = {θ} to be a set of
parameters in a model, and B = D data resulting from an experience or an observation, then the Bayes’
theorem tells us how our prior knowledge on the parameters P ({θ}|I) is transformed into a new posterior
P ({θ}|D, I) by the likelihood P (D|{θ}, I). Here I can be written M0, and represents a particular model as
well as general background information: before this particular observation, we already had certain expectations
about the parameters A, coming from our knowledge of the physical world, or from the model we are trying to
fit. For example, we might expect a mass to be positive. The resulting equation can be written:

P ({θ}|D,M0) =
P (D|{θ},M0)P ({θ}|M0)

P (D|M0)
(3.2)

But consider another alternative. If we take A to represent a certain model M0, and B to represent our data
set, we know have:

P (M0|D, I) =
P (D|M0, I)P (M0, I)

P (D|I)
(3.3)

The term P (D|M0, I) can be calculated from the previous equation 3.2: it is the denominator of the right-hand-
side. P (M0|I) is our prior belief on the model M0 to provide the correct description of the data. P (D|I) could
be problematic, but we can get rid of it by considering two models, and studying their relative probability:

P (M0|D, I)

P (M1|D, I)
=
P (D|M0, I)

P (D|M1, I)

P (M0|I)

P (M1|I)
(3.4)

The first term on the right-hand-side of this equation, P (D|M0, I)/P (D|M1, I) is what is called the Bayes’
factor between models M0 and M1. Supposing we have the same prior belief on the two models, it represents
their relative probability, and quantify the ability of one model to account for the observations, with respect to
the other model.

An important advantage of the Bayes’ factor over other methods such as χ2 or information criterion, is that
the Bayes’ factor takes into account a term akin to the Occam’s razor idea: models with more parameters, though
they usually fit the data better, should not always be preferred. In terms of model selection the improvement
on the quality of the fit should be discounted by the increased volume of the prior model parameter space.

In our particular case, we calculated the Bayes’ factor for the lens models (1) and (2), taking as constraints
either the time delay measurement alone, or the time delay combined with flux ratio measurements.
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Fig. 1. Bayes’ factor between model 1 and 2, with different priors. We plot ln(B1,2) on a logarithmic scale. Each color

represents a different lens.

4 Our results

Results are summarized in Fig. 1. Large Bayes’ factors favor the simpler model, model 1. Above (below)
a certain threshold, the evidence in favor of model 1 (2) is considered strong. In-between, the evidence is
inconclusive, and no model can be preferred. In the following, we highlight a few relevant aspects.

4.1 Effect of the prior on n

The lens data set is mainly composed of galaxies, which we expect to be nearly isothermal. Nevertheless, our
analysis show that few of them are in fact well described by a power-law model with a reduced prior on n, while
the majority favors the more complex model, which also include the shear: the effects of the environment can
not, in general, be taken as negligible. In the case of the larger prior, 0 < n < 3, the number of lenses well
described by the power-law increases.

4.2 Effect of the prior on γ

In more than half of the cases, allowing higher (unrealistic) shear strength does not change the Bayes’ factor.
This is a consequence of Occam’s razor: as the parameter space grows, the fit gets better and better, but this
effect is compensated for by the Bayes’ factor.

In about a quarter of the cases, widening the prior on γ favors the more complex model, as the fit gets
sufficiently better to over-compensate for the Occam’s razor term.

4.3 Effect of the flux ratios

Time delays depend on the gravitational potential of the lens, whereas flux ratios depend on its second derivative.
Furthermore, they are subject to a number of local phenomena (microlensing, absorption...) that do not affect
time delays. Therefore, flux ratios can be hardly described with a smooth model, eventually requiring a more
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complex modeling than needed by time delays. This is consistent with our findings: in fact, adding flux ratios
as a constraint leads to having less lenses accurately described by model 1, since lnB1,2 decreases.

5 Conclusion

Bayesian techniques are a good way to discriminate between lens models and allow us to decide which double
lenses can be accurately modeled by a simple power-law model. With the result from this analysis, we now
have a good sample of double lenses, together with lens models, to determine cosmological parameters more
accurately.
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