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PARTICLE TRANSPORT AT RELATIVISTIC SHOCKS

I. Plotnikov1

Abstract. Relativistic shocks structure studied in recent analytical works and large Particle-In-Cell (PIC)
simulations reports the existence of strong self-generated magnetic fields at the proximity of the shock front.
These fields are generated by plasma instabilities (e.g. Weibel instability) and are turbulent on plasma
skin depth scale. In this proceeding we present the study of particle transport in microturbulent isotropic
magnetic field δ ~B in the presence of external mean field ~B0, assuming 〈δB2〉 � B2

0 . The expression of
parallel (D‖) and transverse (D⊥) diffusion coefficients are found. We find that D‖ evolves as the square
of particle energy and D⊥ saturates when particle reduced rigidity ρ is greater then δB/B0. Application
to relativistic shocks upstream and downstream regions shows that the acceleration by Fermi mechanism is
possible only for the range of particle rigidities where 1 < ρ < δB/B0.
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1 Introduction

High energy radiation from astrophysical objects as hot-spots of Active Galactic Nuclei (AGN) and Gamma
Ray Bursts (GRBs) is usually expained by accelerated charged particles at relativistic shocks. In the case of
GRBs external shock front attains Lorentz factors up to several hundreds (Γs ∼ 100), providing an unique
source involving ultra-relativistic blastwaves. It is logically expected that relativistic effects play an essential
role in shock physics. For example, strong magnetic fields > 10−4G in preshocked region are inferred from
observations, difficult to explain as the ISM or ambient field strength (Li & Waxman 2006), but seem to be
produced by the shock itself.

As supported by PIC simulations (Sironi & Spitkovsky 2011) relativistic shocks produce strong self-generated
magnetic fields mediated by Weibel (filamentation) instability. Typical variation scale of such fields corresponds
to plasma skin depth (∼ 105 m in the ISM). Larmor radius of individual particles with relativistic thermal energy
ΓSmpc

2 in the downstream region appears to be always larger than this scale. Particle acceleration should be
possible as long as the external magnetisation remains low, and produce non-thermal particle distribution with
power-law tail s = −2.24. There are, however, no evidence of acceleration up to Very High Energies in relativistic
shocks. In order to investigate particle acceleration we study the effects of intense small-scale turbulence on
particle transport, adopting test-particle approximation. In following sections we present a study of transport
of charged particles in intense small-scale turbulence and apply the results to constrain diffusive acceleration
mechanism at relativistic shocks.

2 Particle trajectories

We consider particles with Larmor radius RL greater than the magnetic field coherence length lc. As astro-
physical environments are always magnetised we superpose an external constant field ~B0 along z direction on
turbulent self-generated field δ ~B, isotropic. To illustrate in simpliest way the behaviour of particles in small-scale
magnetic turbulence we consider three different cases: regular magnetic field alone B0~ez, purely turbulent field
with coherence length lc smaller then the particle Larmor radius RL, and two fields together with δB >> B0

and RL/lc >> 1. In Fig. 1 field structure (top pannel) and corresponding particle trajectories (bottom panel)

are presented. Constant field ~B0 produces the well-known helical particle trajectory (left column). δ ~B alone
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(a) Constant magnetic field along z.

Lc

(b) Purely turbulent field with cohrence
length lc equal to the cell size.

(c) Weak mean field superimposed on
strong small-scale turbulence

(d) Regular helical trajectory in con-
stant magnetic field along z.

(e) Random walk trajectory in purely
turbulent field.

(f) Weak mean field superimposed
on strong small-scale turbulence (with
RL � lc): perturbed helical trajec-
tory.

Fig. 1: Example of three magnetic field structures (on the top panel) and corresponding particle trajectories
(on the bottom pannel).

produces isotropic “random walk” trajectories (middle column). The superposed ~B0 and δ ~B produce a mod-
erately pertubed helical trajectory (right column). It is interesting to note that the trajectory is not isotropic
despite that 〈δB2〉/B2

0 >> 1. It illustrates the effect of smallness of lc compared to RL. Hence, one cannot

neglect the mean field, even very weak in comparison to δ ~B.

3 Transport in small-cale turbulence: theory and simulations

Only one physical assumption is necessary to deduce transport coefficients when RL >> lc: scattering time is
greater than turbulent field coherence time τs >> τc. Consider random rotations from δ ~B field and regular
deflexion in (x, y) plane from ~B0 field. Then one may obtain diffusion coefficients expressions as (Plotnikov et
al. 2011)

D‖ =
c2

3νs
, D⊥ =

c2

3

νs
ω2
L|0 + ν2s

, whereνs =
2c

3ηρ2
, (3.1)

where the subscripts ‖ ans ⊥ signify respectively parallel and transverse to ~B0, νs is the angular scattering
frequency, ωL|0 is the Larmor pulsation in B0 field only (ωL|0 = qB0/γmc), ρ is the particle reduced rigidity
and η = 〈δB2〉/(〈δB2〉+B2

0) is the field degree of turbulence.
When ρ � 1, ωL|0 >> νs, so as D⊥ ' c2/3νs/ω

2
L|0 = 2clc/9B

2
0 + 〈δB2〉/B2

0 . Hence it is independent of
particle energy and governed by turbulence strength only.

Numerical Monte-Carlo simulations were performed in the same spirit as in Casse et al. (2002). Numerical

scheme consists in integrating a large number of trajectories in random δ ~B realization. Then statistical estimates
of D‖ and D⊥ were obtained as the mean square of displacements from initial particle position divided by ∆t.
We expored the range of rigidities going from 1 to 102 and turbulence degree 〈δB2〉/B2

0 was varied between
1 and 104. Results are presented in Fig. 2 were parallel (left side) and perpendicular (right side) diffusion
coefficient are plotted as function of numerical rigidity ρ′ = 2πRL/Lmax, where Lmax ' 10lc. As expected,
D‖ ∝ ρ′2 independently of turbulence level. For ρ′ <

√
〈δB2〉/B2

0 , D⊥ ∝ ρ′2 until it reaches the plateau
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Fig. 2: Diffusion coefficients D‖(left panel) and D⊥ (right panel) as function of reduced rigidity ρ′. The symbols
correspond to various turbulence degrees 〈δB2〉/B2

0 going from 1 to 104 as indicated. D‖ ∝ ρ′2 independently

of turbulence level. For ρ′ <
√
〈δB2〉/B2

0 , D⊥ ∝ ρ′2 until it reaches the plateau at ρ′ ∼
√
〈δB2〉/B2

0 .

at ρ′ ∼
√
〈δB2〉/B2

0 . Both are in agreement with equations 3.1. Systematic presentation of the theory and
simulations of this transport regime can be found in Plotnikov et al. (2011). At this point we can examine
first-order Fermi acceleration mechanism when only small-scale turbulence is considered.

4 Application to upstream and downstream of relativistic shocks

The natural way to apply transport process is to concider two co-moving frames: upstream (unshocked medium,
Laboratory frame) and downstream (shocked medium).

4.1 Upstream

In the upstream region the shock front move with the speed Vs|u ' c(1 − 1/Γ2
S), very close to the lignt speed.

Particles coming from downstream region are rapidly caught up by the shock front. The distribution function
is consequently highly anisotropic, confined to the loss cone ∆θ ' 2/ΓS (Achterberg et al. 2001)

As argued in Lemoine et al. (2006) when only B0 is present or when particles experiences large-scale tur-
bulence with ρ < 1, acceleration process cannot take place due to field correletion between upstream and
downstream region. If the field is turbulent on small scales (RL > lc) then the correlation disappears and
diffusive acceleration is working. In the latter case, mean field deflective effect dominates over small-scale tur-
bulence when ρ is large and returns are goverened mostly by B0. The acceleration process may be quenched
when ρ >> 1, as in the case of pure B0 field. This is illustrated in Fig. 3 where phase space plots of entering
(red dots) an escaping to downstream (blue dots) particles in three cases are plotted. Regular B0 field deflects
particles to the left (left panel, see also Achterberg et al. 2001). When small-scale turbulence is present and
ρ′ ∼ 1 the distribution is isotropic in velocity space (middle panel) so that the acceleration is operative. With
increasing energy ρ′ > δB/B0 and the turbulent field is no more able to isotropize the distribution. Particle
residence time in the upstream region (tups) is then : t̄L/ΓS < tups < tL|0/ΓS . Were t̄L and tL|0 are Larmor
periods in the rms field and mean field alone, respectively. Lower limit applies when ρ is close to 1 and the
upper limit applies when B0 governs particle returns.

4.2 Downstream

Shock front speed in the downstream comoving frame is Vs|d ' c/3. Shock compression of upstream magnetic
field makes B0 to be always perpendicular to the shock normal, therefore diffusive returns are governed by the
transverse diffusion coefficient. Residence time is estimated as tdow ' 18D⊥/c

2. As result of D⊥ saturation at
highest energies, diffusive return time attains a finite value.
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(a) ~B0: locked phase space configura-
tion. No Fermi cycles.
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(b) δ ~B + ~B0, ρ′ ∼ 1, unlocked configu-
ration

-4 -2 2 4
Βy Gs

-4

-2

2

4
Βz Gs

(c) δ ~B + ~B0, ρ� 1

Fig. 3: Three plots of upstream velocity space in shock front plane: βyΓS vs βzΓS. Shock front propagates along
x direction. Red dots: entry from downstream. Blue dots: escape to downstream.

These results are in qualitative agreement with direct simulations of Niemiec et al. (2006) of particle acelera-
tion including small-scale intense magnetic fields in the downstream region. When B0 and large-scale compressed
field are present these authors observed acceleration cut-off.

Diffusive acceleration is not effective enought to span several orders of magnitude in energy. Small-scale
turbulence is effective at the beginning of the process. But if the extenal medium is magnetised the acceleration
process is quenched rapidly.

5 Conclusion

In this proceeding a study of particle transport in small-scale intense magnetic turbulence was presented. We
found that:

• When particle energy is high (e.g. ρ >> 1), B0 is kinematically important, and the particle transport
is anisotropic, even if δB2 >> B2

0 , as illustrated in Fig. 1. The diffusion coefficients (Eq.3.1) have been
derived with a theory that is exact in the limit of a short correlation time τc << τs.

• Diffusive shock acceleration in small-scale turbulence appears to be effective only when 1 < ρ <
√
δB2/B2

0 .

Conclusions about acceleration performances might be modified if coherence length of the turbulence grows
with time, additionnal source of magnetic turbulence on large scale is present in downstream region.
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