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TOWARDS 3D SIMULATIONS OF CEPHEIDS STARS

S. Félix1, E. Audit1 and B. Dintrans2

Abstract. We are using the Heracles hydrodynamic simulation code, to construct simplified 1D and 2D
simulations of the kappa-mechanism following Gastine’s results obtained with the Pencil Code. In this
proceeding, we focus on the conduction step for stable and unstable setups, in 1D and 2D with convection.
We thus show that we are reproducing Pencil Code’s results quite well.
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1 Introduction

Cepheids are giant stars displaying periodic variations of luminosity and radius. This phenomenon was explained
by Eddington (1917) through the κ-mechanism, an excitation mechanism of stellar oscillations that is related
to sharp changes of opacity in ionisation regions.

A simplified κ-mechanism model (the propagation of radial acoustic waves in a partially ionised shell in
1D and 2D cartesian boxes) has been previously investigated with the Pencil Code by Gastine & Dintrans
(in particular, refer to Gastine & Dintrans (2008), hereafter GD2008). We intend to extend this work to 3D
simulations with the hydrodynamic code Heracles from CEA, France. First step is getting hydrodynamic
equilibria and was presented in SF2A 2012 proceedings (Félix et al. (2012)).

Hydrodynamics and gravity equations are solved with an explicit scheme (second order in time & space) on
a cartesian-fixed grid of physical size l × L, with constant spacing ∆x. In this proceeding, we will focus on the
implicit conduction step of Heracles.

2 Conduction step

In the conduction step, we are solving cv ρ
∂T
∂t − ~∇ · (κ~∇T ) = 0 where κ denotes the conductivity, T the

temperature, ρ the density and cv the heat capacity at constant volume. Temperatures are normalized to the
surface temperature.

The κ-mechanism implies that opacity sharply increases in a definite region of the star envelope. In our code,
this opacity bump is shaped by a radiative conductivity hollow, since opacity and conductivity are inversely
proportional. The hollow is parametrized as follows:

• Tbump is its position in the temperature profile and 3 cases are investigated: Tbump = [1.7, 2.1, 2.8];

• σ is its slope, with σ = 7 as a standard value;

• 2 ∗ e is its FWHM and we usually take e = 0.4.

Following GD2008, conductivities κ only depend on temperature and are calculated using the following
formula:

κ(T ) = κmax

[
1 +A−Π/2 + arctan(σT+T−)

Π/2 + arctan(σe2)

]
,
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where

T± = T − Tbump ± e;

A =
κmax − κmin

κmax
, the relative amplitude of the conductivity extrema κmax and κmin;

and Tbump, σ and e are the already-defined hollow parameters.

2.1 Numerical scheme

Heracles uses a finite-volume Godunov method. The timestep dt is therefore limited by stability conditions
imposing that dt 6 min (dthydro,dtgravity,dtradiative diffusion) 6 dtradiative diffusion. Typical dt in that case are
dt ' 10−6. It leads to lengthy wall times and an implicit scheme has been implemented for the conduction
step. As a consequence, the dynamics of the simulation becomes only constrained by the speed of sound and
typical dt are now dt ' 10−3. This implicit scheme can be used at the first or second order and a simple input
parameter allows to switch between both accuracies. Finally, in our simulations, opacities may be given either
in an explicit or implicit form.

2.2 Growth rates

The hydrodynamic equilibrium with conduction is perturbed on velocity by the eigenfunctions of the unstable
fundamental mode. These eigenfunctions were calculated by GD2008 for our three cases Tbump = [1.7, 2.1, 2.8]
and are shown in Figure 1.

Fig. 1: Eigenfunctions of the unstable fundamental
mode (real part of velocity) for Tbump = 1.7 (solid
line), Tbump = 2.1 (crossed line) and Tbump = 2.8
(dashed line). Calculations were made by GD2008.

Tbump nx τ
1.7 512 −2.63× 10−2

2.1 512 +1.97× 10−2

2.8 512 −2.14× 10−2

Table 1: Growth rates τ of the mean vertical mo-
mentum < ρux > for different setups: Tbump is the
position of the hollow in the temperature profile
and nx is the number of points along the gravity-
directed x-axis of our simulation box.

We then studied the temporal evolution of the mean vertical momentum < ρux > (averaged over the box)
and calculated its growth rate τ during the linear phase (t . 50). Results are summarized in Table 1, while
Figure 2 shows the corresponding evolutions with time.

Only one setup (hollow with Tbump = 2.1, green line on Figure 2) is unstable with a positive growth rate.
This corresponds to the instability conditions in which the κ-mechanism is efficient, given by GD2008:

1. the hollow has a sufficient slope:
dκT

dx
< 0 where κT =

∂ lnκ

∂ lnT
.

2. the instability zone is well located: ψ =
< cvTtransition > ∆m

PL
≈ 1, with P the acoustic mode period and

L the luminosity.
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Fig. 2: Temporal evolution of the mean vertical mo-
mentum < ρux > for Tbump = 2.8 (Upper panel),
Tbump = 2.1 (Middle panel) and Tbump = 1.7
(Lower panel). The perturbation in velocity is
added at t = 3.

Fig. 3: Temporal evolution of the mean vertical mo-
mentum < ρux > for Tbump = 2.1.

With these criteria, the other two setups (Tbump = 1.7 and Tbump = 2.8) are stable because the instability
zone is respectively too close or too far from the surface to maintain instability. This shows on Table 1 since
τ < 0 for both cases.

One oscillation takes approximatively 1.15 units of time (43 oscillations in a bit less than 50 units of time),
which corresponds quite well to what GD2008 got with the Pencil Code.

2.3 Nonlinear saturation

Unstable simulations with the initial setup Tbump = 2.1 keep a positive growth rate until they reach their
nonlinear limit-cycle stability, where the mean vertical momentum oscillates between two definite values (see
the final plateau at late times in Figure 3). It occurs around t ≈ 200, which agrees well with the characteristic
timescale of instability given by 1/τ ≈ 100. The dynamics and values of this saturation are also compatible
with GD2008’s results.

3 Cepheids in 2D

Now that hydrodynamic, gravity and conduction steps are available and accurate, we can go further on to
2D simulations. We choose new setups known to trigger convection (Gastine & Dintrans (2011), hereafter
GD2011). As we aim at studying convection-pulsation coupling, conductivity profiles are now shaped such that
the temperature gradient becomes superadiabatic around the conductivity hollow and convection may develop
there (the so-called Schwarzschild’s criterion).

We focused on profiles named G6 and G8 in GD2011 that proved to be the more relevant ones. Figure 4 is
similar to Figure 3 in GD2008 but for both G6 and G8 simulations. It shows the conductivity (with the hollow),
temperature, density and dκT/dx profiles for these two setups. On the latest, we see that these simulations are
set in order to fulfill the first instability condition around the hollow. Convection is indeed triggered as we do
observe convection plumes in Figure 6.

Temporal evolution of the mean vertical momentum < ρux > for these two setups (Figure 5) shows that the
G6 one is stable while the G8 one is unstable, as GD2011 predicted.

Please note that high resolution simulations are mandatory to properly represent the instability. Numerically
speaking, to save computational time and cost, we are doing this conduction step once every ten steps without
altering the behaviours or results.

4 Conclusions

With Heracles, we managed to reproduce GD2008’s results (obtained with Pencil Code) quite well concern-
ing 1D hydrodynamical simulations with conduction. These simulations show oscillations of the mean vertical
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momentum < ρux >, leading to a nonlinear saturation for the unstable setup. 2D simulations trigger con-
vection and show a stable or unstable behaviour depending on the initial setup, accordingly to GD2008’s and
GD2011’s results. Finally, we started long-awaited 3D simulations of this convection-pulsations interaction and
will present our results in a forthcoming paper.

Fig. 4: Conductivity (Upper panel), temperature
(Second panel), density (Third panel) and dκT

dx
(Lower panel) profiles for G6 and G8 simulations.

Fig. 5: Temporal evolution of the mean vertical mo-
mentum < ρux > for setups G6 (Upper panel)
and G8 (Lower panel).

Fig. 6: Snapshot of the vorticity field ~∇× ~u in the 2D model G6 with convection and κ-mechanism.
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