MUSE observations of the intermediate mass black hole ESO 243-49 HLX-1 Adrien Detoeuf¹

N.A. Webb¹, D. Barret¹, O. Godet¹, T. Contini¹, M. Servillat², F. Combes³, K. Wiersema⁴, B. Ciambur⁵, A.W. Graham⁵

¹: Université de Toulouse, UPS, CESR, 9 avenue du Colonel Roche, F-31028 Toulouse Cedex 9, France

²: Laboratoire Univers et Théories (CNRS/INSU, Observatoire de Paris, Université Paris Diderot), 5 place Jules Janssen, F-92190 Meudon, France

³ : Observatoire de Paris, LERMA, and College de France, 61 Av. de l'Observatoire, 75014 Paris, France

⁴ : Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK

⁵: Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia

<u>Abstract</u>

The formation of intermediate mass black holes is still poorly understood. With the discovery of the best intermediate mass black hole candidate, HLX-1 in the galaxy ESO 243-49, we can finally test some of the theories. Thanks to data taken with the Multi Unit Spectrograph Explorer (MUSE) on the VLT, which provides high-precision spectra in the visible and near infra-red domain (4750-9350 Angstroms), we are investigating both the intermediate mass black hole and its environment. We present preliminary results on the mass of the supermassive

Introduction

Black holes can be classified by their mass : stellar mass black holes with masses below 100 $\rm M_{\odot}$ come from the gravitational collapse of massive stars and supermassive black holes (SMBH) have a mass range of 10⁶-10⁹ M and are located in the center of massive galaxies. Theoretically, intermediate mass black holes (10²-10⁵ M) are also proposed but the observational evidence for these objects is weak and their origin is still unclear. Even if the theory doesn't rule out a black hole with a mass which is between those 2 ranges, find one is difficult. Currently, the best candidat is HLX-1 in the galaxy ESO 243-49 (Farrell et al. 2009) which may originate from a past collision between ESO 243-49 and a dwarf galaxy (Webb et al. 2010). Determining the mass of the SMBH of ESO 243-49 and the mass of HLX-1 with the M- σ relation and the stellar population in the region of HLX-1 will help for future simulations of

Method

The data were taken with the integral-field units of MUSE on the Very Large Telescope with a spectral resolution of 2.6 Å in the wavelength range 4750-9350Å. 12 observations of 500s were reduced and combined with the ESO software Reflex (Hook et al., 2008). To determine the velocity dispersion and the stellar population, we used the Penalized PiXel-Fitting method (Cappellari & Emsellem 2004) : creating a model galaxy spectrum by convolving a parametrized line-of-sight velocity distribution with stellar template spectra and fitting the model to the ESO 243-49 spectrum (Fig.1). We defined 2 regions (Fig.2) : the central bulge to determine the central velocity dispersion σ_c , corrected to an effective aperture $r_e/8$ with r_e the half-light radius and use the relation :

 $M_{BH} = 1.32(\pm 0.36) \times 10^8 M_{\odot} (\sigma_c/200)^{4.72\pm0.36}$ (Ferrarese & Merritt 2000) and the halflight region to estimate the effective velocity dispersion σ_e and use the relation : $M_{BH} = 1.2(\pm 0.2) \times 10^8 M_{\odot} (\sigma_e/200)^{3.75\pm0.3}$ (Gebhardt et al. 2000). The regions were elliptical (Fig. 1) and circular apertures are needed to apply the M- σ relation so we used radii equal to the semi-major and semi-minor axis of the ellipses. We used the MILES and the Indo-U.S. library for templates spectra.

Results		
	ESO 243-49	
Radius	Semi-major axis	Semi-minor axis
Central velocity dispersion σ_c (km/s)	205.2±1.7 (1σ)	222.8±1.8 (1σ)
Effective velocity dispersion σ_{e} (km/s)	201.6±1.7 (1σ)	202.1±1.8 (1σ)
Black hole Mass M _{BH}	0.9-4.5×10 ⁸ M _☉	

Discussions

We have made an estimate of the mass of the supermassive black hole in ESO 243-49 using the velocity dispersion : we estimate a mass of 0.9 – 4.5×10^8 M_{\odot} (1 σ).

This estimate is similar to the estimate made using the black hole mass-host spheroid luminosity relation

Fig. 1: ESO 243-49 spectrum (black) fitted by pPXF with the model galaxy spectrum (red) using MILES library. Residuals (green) and non-fitted gas emission lines (blue) are also fitted.

(Savorgnan et al., 2013) 0.3 - $3.7 \times 10^7 M_{\odot}$ (1 σ) and the value from the black hole fundamental plane relationship (Koerding et al., 2006) of 0.5 - $55.0 \times 10^7 M_{\odot}$ (1 σ). Given the short exposure time, we do not have a reliable (3 σ) detection of HLX-1 and therefore can not use this method to make a good mass constraint of the IMBH. However, there is evidence for a young stellar population possibly associated with HLX-1, as proposed by Farrell et al. (2012). Further work continues to investigate the nature of HLX-1 and ESO 243-49, in particular looking for evidence of collisions. The constraints made during this work will be used in SPH simulations to understand the possible collision between HLX-1 and ESO 243-49.

Fig.2 : Bulge region (blue dotted line), half-light region (red line), "total" luminosity region (black dotted line) **References** Cappellari, M. & Emsellem, E., 2004, PASP, 116, 138 Farrell, S. A. et al., 2009, Nature, 460, 73 Farrell, S. A. et al., 2012, ApJ, 747, 13 Ferrarese, L. & Merrit, D., 2000, ApJ, 539, 9 Gebhardt et al., 2000, ApJ, 539, 13 Hook et al., 2008, ASPC, 349, 338 Koerding et al., 2006, A&A, 456, 439 Savorgnan et al., 2013, MNRAS, 434, 387