Protoplanetary disks with JWST

Olivier Berné (IRAP, CNRS and Univ. Toulouse)

SF2A 2015 / Toulouse / Jun 3 2015

How is this presentation biased ?

There will be a lot of ALMA/NOEMA vs JWST

(see also general discussion in the ALMA/NOEMA synergy with other facilities tomorrow in S14)

I will speak mostly about what can be done with MIRI

I will show examples of disks around mostly Ae/Be stars

(because they are extended and bright in the mid-IR, but most of what I will say applies to Ttauri stars)

I will not talk much about PAHs in disks (see presentation of P. Pilleri)

Context : star and planet formation

[Shu 1989] [Frieswijk, PhD, 2008]

Direct observations of disks

Face on

PRC95-45b · ST Scl OPO · November 20, 1995 M. J. McCaughrean (MPIA), C. R. O'Dell (Rice University), NASA

Morphology and structure

Courtesy of I. Kamp

Morphology and structure

Courtesy of I. Kamp

What are the key questions ?

How do planets form ?

- Understand the evolution of dust properties : growth, chemical structure
- Understand the dynamical evolution of dust and gas : formation of structures, photo-evaporation
- Direct observations of protoplanets embedded in their disks

What is the chemical inventory at the place and moment planets form ?

- Identify the species present in disks, and where they are in the disks
- Evidence chemical evolution of disks

How do planets form : understand the evolution of dust

ALMA/NOEMA

- Cold dust

- -> large grains in the disk mid-plane
- -> these grains are likely to be decoupled from the gas

JWST-MIRI

- Hot dust :

-> Either large hot grains close to the star : dust composition

-> Or small (hot) dust grains, coupled to the gas in the upper layers of the disk

How do planets form : understand the evolution of dust

How do planets form : understand the dynamical evolution of dust and gas

Observations in Orion [Vicente et al. 2013]

cf. presentation of J. Champion on proplyds in S09

How do planets form : understand the dynamical evolution of dust and gas

Spiral density waves generated by the gravitational instability

Lopsided dust concentration due to the Rossby wave instability

[Baruteau priv. com.]

[Baruteau et al. PPVI 2014]

How do planets form : understand the dynamical evolution of dust and gas

1" ≡ 100AU

Near IR

H1

H2

-0.5

d) H/Ks bands PDI w/ VLT

0.5*

S3

S2

1.5"

S1

0.5"

0"

-0.5"

-1"

Distance (arcsec

-1.5"

100

0 -

-100

Distance (AU)

HD 142157

20

-

0

ī

2

continuum

a

IRS 48

How do planets form : direct observation of protoplanets

Chemical inventory: what are the species present in disks ?

ALMA/NOEMA

- Rotational transitions from molecules with dipole moment
- Cold molecular gas

JWST-MIRI

- Vibrational transitions from molecules (including molecules with no dipole moments)
- Warm molecular gas
- Molecules present in ices covering dust grains

Chemical inventory: what are the species present in disks ?

- Spatially resolved observations of the chemical composition
- Sensibility to key species which are very difficult (water) or impossible (like molecular hydrogen/acetylene/carbon dioxide/methane/ethylene/benzene) to observe in the (sub-)mm
- Sensitive to the UV photo-chemistry (largely unexplored) in the gas and in the ices

Chemical inventory: how do disks chemically evolve ?

[Reboussin et al. A&A 2015 accepted]

End