

SFE in LSB regions

15 May 2019

Françoise Combes Observatoire de Paris

- Star formation in XUV disks
- AGN in cool cores: moderation

Outline

- Environmental effects, RPS
- AGN positive feedback?

ALMA observation of the XUV disk

No CO detection

$H\alpha$ (magenta) and FIR 24 μ m (black)

Bicalho et al 2019

Very high depletion times

Bicalho et al 2019

5

0

10

15

Molecular Gas Salomé et al 2006

Gas raining down towards the AGN

Gas flow in cool core clusters

Star formation (green) Canning et al 2014

Environmental quenching

Ram pressure in clusters: **in general slow**: In Virgo, HI deficient, but not H_2 (Kenney & Young 1989) but **can be fast** in exceptional cases: ESO137-001

Jachym et al 2014

Ram-pressure quenching

Tail of 80kpc in X-ray gas, 40kpc in CO $M(H_2)$ in C =1.5 10⁸M_{\odot}

Jachym et al 2014

ALMA CO more H_2 in the tail than in disk

→ in situ

Jachym et al 2019

Jachym et al 2017

Hα surface brightness (1e37 erg/s/kpc²)

Giant $H\alpha$ tail in Virgo

Kenney+ 2008

Tail around M86 : H2 gas in hostile environment

Star formation efficiency

Gas in tails, and far from disks have not enough pressure from stars

And the gas surface density is not enough for fast HI to H_2 transition

Verdugo et al 2015

Importance of pressure

The surface density of stars is very important for the SF effeiciency

Shi, Helou et al 2011

The HI to H₂ transituon is favored by external pressure

Molecular gas in the shell

 H_2 dominant at E, HI at W, tdep=7-16 Gyr

Red: CO, White: HI, FUV-Galex: black CO21, HI contours

Star formation triggering

The radio jet effectively triggers star formation in the shell along the jet \rightarrow positive AGN feedback

Salome et al 2016

Conclusions

XUV disks: very low SF efficiency (disk flaring?)

AGN feedback: cool-core clusters, molecular gas outside disks low efficiency

Environment processes: Tides, ram-pressure, starvation Formation of molecular gas in situ, low SFE

AGN positive feedback: jet induced star formation **low SFE**