Signatures of recollimation shocks in blazars, focus on Mrk 421

 ρ

P

SF2A Particle acceleration in astrophysical and space plasmas **May. 2019, Nice**

AGN Jets should naturally show multiple recollimation shocks

Jet conditions:

- Supersonic/superAlvenic
- Pressure mismatch with external medium
- Locally severe pressure drop

Relativistic (M)HD simulations

(e.g. Lind et al. 1989, Mizuno et al 2015, Fromm et al. 2016, Hervet et al. 2017, ...)

200 250 300 PennState

200

250

300

Stationary components in high frequency peaked BL Lacs (HBLs)

Example of Mrk 501

TeV HBLs are the blazars presenting the most stationnary/slow VLBI radio knots

(Hervet et al. 2016, Piner & Edward 2018)

Impose high compactness of the emission zone, need high Doppler/lorentz factor to cope with causality and gamma-gamma opacity

Stationary knots as recollimation shocks – MWL flares

VLBI cores can be unresolved regions with smaller knots (e.g . BL Lac with Radioastron, 2016)

Stationary knots as recollimation shocks – structure of knot strings

Prediction:

If stationary VLBI radio knots are recollimation shocks, the inter-knot gaps should be proportional to the jet radius (isothermal approximation)

O. Hervet SF2A – May 2019, Nice

Mrk 501

Expected signature of successive shocks in lightcurves

New prediction to be tested:

If powerful shocks, jets perturbations should show signatures in the lightcurves.

Assuming a constant flow speed:

$$\Delta t_i = (1+z) \frac{\Delta x_i}{c\beta_{app}}$$

Due to high Doppler beaming, Blazars are the best candidates, with such a pattern expected in a week-to-year timescale.

Mrk 421, the ideal candidate

13 years of Swift-XRT observations – *Stacking the flares to unveil an intrinsic pattern*

All flares stacked

Intriguing 600 days excess

Theoretical models

I- No pattern after big flares

Fit with a baseline and an exponentially modified Gaussian function (EMG)

Raise as Gaussian, decrease as exponential

III- The core is only the expanding funnel Baseline+ 4 Gaussian model

Observationally constrained model

- Inter-Gaussian gap scaled on inter-knot gap
- Gaussian widths scaled on knot size
- Gaussian amplitude scaled on knot volume

9

Model comparison

Chi2 calculated for [T0-7, T0+70]

A main flaring zone in the upstream radio knot is favored, with an apparent speed of the flow $\beta_{app} = 45^{+4}_{-2} c$

Many concerns might arise now...

- Probably a false/misleading pattern from stacked uneven data sets
- What if it's just an happy coincidence of stochastic fluctuations?
- Anyway, we cannot prove anything with such a bad fit

Lightcurve simulations

Only way to test the significance of an intrinsic post-flare pattern is through lightcurve simulations:

- Apply the exact same method on realistic Mrk421 simulated lightcurves
- Compare the fit quality of the multi-Gaussian scenario of the real and simulated dataset

We want simulated lightcurves to have:

- Same PSD
- Same flux and error distributions
- Same data sampling

O. Hervet SF2A – May 2019, Nice

Mrk 421 lognormal flux distribution

A simulated lightcurve is considered good if within 3 sigma of PSD index and flux distribution parameters

Example of Lightcurve passing the checks

Post-flare pattern tested against numerous simulations

A post-flare variability pattern associated with radio-knots is better than schochastic fluctuations at more than 3.2 sigma (checked by different flare selection cuts)

Jet physics

 $\beta_{app} = 45^{+4}_{-2} c \rightarrow \text{ strong constraint on the angle with the line of sight: } \theta < 2 \arctan(1/\beta_{app})$

 $[\]theta < 2.69 \deg$ (90% confidence level)

Particle re-acceleration in TeV HBLs?

- Mrk 421 (among other TeV HBLs) shows a challenging, too hard, TeV spectrum for standard SSC models (Fossati et al. 2008)
- Fossati et al. (2008) : [Mrk 421 is] "very suggestive of acceleration or injection of the higher energy end of the electron population"

→ This issue is mostly addressed with lepto-hadronic scenarios (e.g. for Mrk 421: Abdo et al. 2011; Mastichiadis et al.2013; Zech et al. 2017)

Other approach

If a fraction of the particles accelerated in the first shock are not fully cooled before reaching other shocks, they will be re-accelerated.

Conclusion & Outlook

- Mrk421 shows evidence of a flaring variability pattern associated to the passage of perturbations through the radio knots at more than 3 sigma significance compared to stochastic fluctuations
- The deduced physical values of the jet (angle, Lorentz, Doppler) are relatively close to the estimations from SED modelling, and are not contradicting the minimum Doppler factors estimated from photon-photon absorption (e.g. Tavecchio et al 1998) $\delta \ge 15$
- Very fast observed variability (~15min, Gaidos et al. 1996; Paliya et al. 2015) is not contradicting this approach if we consider that jets perturbations are subject to have small size clumps/ turbulences (*e.g. Marscher et al. 2014*)
- Clear VHE/X-ray correlation observed for all the possible state of the source (Fossati et al. 2008; Horan et al. 2009; Acciari et al.2011)

It means same(s) zone(s) for X-ray and VHE in Mrk 421

Following our study we expect VHE also originating from (inside) the radio-knots

Future work

- \rightarrow Check the relevance of this scenario of Mrk 421 with VHE data
- → Check if other TeV HBLs present similar patterns

Hervet, Williams, Falcone, Kaur, "Probing an X-ray flare pattern in Mrk 421 induced by multiple stationary shocks: a solution to the bulk Lorentz factor crisis" https://arxiv.org/pdf/1904.06802.pdf (accepted in ApJ)

