Dark Matter candidates

And

How to probe them on the Galactic (Milky Way) scale

Julien Lavalle LUPM – CNRS – U. Montpellier

SF2A 2019 – PNCG mini-workshop

Nice University – May 17, 2019

The cold Dark Matter (CDM) paradigm

The cold Dark Matter (CDM) paradigm

<u>So far, only gravitational evidence for DM</u> (cosmological structures+CMB)

CDM successes:

- CMB peaks
- Successful structure formation (from CMB perturbations)
- => CDM seeds galaxies, galaxies embedded in DM halos
- Lensing in clusters + rotation curves of galaxies
- Also consistent with Tully-Fisher relation (baryonic physics)

ISSUES:

- * No DM particles identified so far (a generic statement for the dark universe: issue of the origin/s)
- * How cold must it be?
- * Some observational issues on cosmological scales? (e.g. Hubble tension)
- * Some observational issues (challenges?) on small scales

Dark Matter on galactic scales

Bulk of luminous matter

Oh+11

* Keplerian decrease of rotation velocity not observed

* Stars and gas not bounded to the object unless invisible mass there

=> Spherical dark matter halo could explain this + natural stabilizer

CDM issues on small (subgalactic) scales

James S. Bullock¹ and Michael Boylan-Kolchin²

¹Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA; email: bullock@uci.edu

²Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712, USA; email: mbk@astro.as.utexas.edu

Core/cusp+diversity problems or regularity vs. diversity problems. Maybe baryonic effects, but clear statistical answer needed. Does same feedback recipe solve all problems at once?

CDM issues on small (subgalactic) scales

arXiv:1707.04256 James S. Bullock¹ and Michael Boylan-Kolchin²

¹Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA; email: bullock@uci.edu

²Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712, USA; email: mbk@astro.as.utexas.edu

Governato+12 Cusps→cores

Core/cusp+diversity problems or regularity vs. diversity problems. Maybe baryonic effects, but clear statistical answer needed. Does same feedback recipe solve all problems at once?

Dark matter distribution properties (and why it matters)

Mass density profile/s

(but mind potentially strong difference between peculiar objects and average expectations)

++ Phase-space distribution of dark matter Many observables related to dark matter searches may depend on velocity (e.g. cross sections, microlensing events, etc.)

\rightarrow Assume a single DM species:

* Massive

* Cold or close to cold (or cold-warm):

CMB peaks + Ly-alpha + structure formation + dwarf galaxy phase space

=> For **DM produced thermally** in the early universe: m > 1-5 keV (bosons or fermions)

=> For **DM produced non thermally** in the early universe: **particle statistics matters**!

Fermions: the Tremaine-Gunn limit ('78) => use **dwarf galaxies as test systems**

\rightarrow Assume a single DM species:

* Massive

* Cold or close to cold (or cold-warm):

CMB peaks + Ly-alpha + structure formation + dwarf galaxy phase space

=> For **DM produced thermally** in the early universe: m > 1-5 keV (bosons or fermions)

=> For DM produced non thermally in the early universe: particle statistics matters!

Fermions: the Tremaine-Gunn limit ('78) => use **dwarf galaxies as test systems**

Liouville's theorem for non-interacting fermions, assuming they were close to FD distribution in early universe

$$f_{\nu}(p,T) = \frac{g_{\nu}}{(2\pi)^3} \frac{1}{e^{E/T} + 1} \xrightarrow{\max} \frac{g_{\nu}}{2(2\pi)^3} \ge \frac{\rho(r)}{m_{\nu}} \times \left\{ f(p) = \frac{e^{-\frac{p^2}{2m_{\nu}^2 \sigma_v^2}}}{(2\pi m_{\nu}^2 \sigma_v^2)^{3/2}} \right\}$$

$$\rho(r) = \frac{9\,\sigma_v^2}{4\,\pi\,G\,\left(r + r_0\right)^2}$$

Cored-isothermal sphere

$$m_{\nu} \gtrsim \left\{ \frac{9\sqrt{2\pi} M_P^2}{g_{\nu} \sigma_v r_0^2} \right\}^{1/4} = 0.1 \,\text{keV} \,\left\{ \frac{r_0}{1 \,\text{kpc}} \right\}^{-1/2} \left\{ \frac{\sigma_v}{30 \,\text{km/s}} \right\}^{-1/4}$$

\rightarrow Assume a single DM species:

* Massive

* Cold or close to cold (or cold-warm):

CMB peaks + Ly-alpha + structure formation + dwarf galaxy phase space

=> For **DM produced thermally** in the early universe: m > 1-5 keV (bosons or fermions)

=> For **DM produced non thermally** in the early universe: **particle statistics matters**!

Fermions: the Tremaine-Gunn limit ('78) => use dwarf galaxies as test systems

Pauli exclusion principle (no assumption on initial phase space): cannot exceed density of degenerate Fermi gas!

$$E_F = \left(\frac{\hbar^2}{2\,m}\right) \left(3\,\pi^2\,n\right)^{2/3} \longrightarrow v_{F,\nu} \equiv \sqrt{\frac{2\,E_{F,\nu}}{m_{\nu}}} = \left(3\,\pi^2\,\frac{\rho}{m_{\nu}^4}\right)^{1/3} \le v_{\rm esc}$$

$$m_{\nu} > \left\{ 3 \,\pi^2 \, \frac{\rho}{v_{\rm esc}^3} \right\}^{1/4} \approx 0.1 \, \text{keV} \, \left\{ \frac{r_0}{1 \, \text{kpc}} \right\}^{-1/2} \left\{ \frac{\sigma_v}{30 \, \text{km/s}} \right\}^{-1/4}$$

\rightarrow Assume a single DM species:

* Massive

* Cold or close to cold (or cold-warm):

CMB peaks + Ly-alpha + structure formation + dwarf galaxy phase space

=> For **DM produced thermally** in the early universe: m > 1-5 keV (bosons or fermions)

=> For DM produced non thermally in the early universe: particle statistics matters!

Fermions: the Tremaine-Gunn limit ('78) => use dwarf galaxies as test systems → Updated by Boyarsky+09: m> 0.5 keV

Bosons: de Broglie wavelength > size of system => $m > 10^{-22} eV$ \rightarrow see review in e.g. Marsh '15 (axion-like particles)

> Lower mass bounds only! (except for unitarity constraints – thermal case)

\rightarrow Assume a single DM species:

* Massive

* Cold or close to cold (or cold-warm):

CMB peaks + Ly-alpha + structure formation + dwarf galaxy phase space

=> For **DM produced thermally** in the early universe: m > 1-5 keV (bosons or fermions)

=> For DM produced non thermally in the early universe: particle statistics matters!

Fermions: the Tremaine-Gunn limit ('78) => use dwarf galaxies as test systems → Updated by Boyarsky+09: m> 0.5 keV

Bosons: de Broglie wavelength > size of system => $m > 10^{-22} eV$ → see review in e.g. Marsh '15 (axion-like particles)

* Interactions?

- \rightarrow Electrically neutral (or charge << 1: milli-charged except in secluded dark sector)
- \rightarrow If thermally produced => (weak) couplings to SM particles
- \rightarrow No prejudice on asymmetry dark matter/antimatter
- → Self-interactions and/or annihilations allowed but SI cross sections bounded
- \rightarrow Possibility of entire dark sector(s)

$$2 {
m cm}^2/{
m g} \simeq 4~{
m b}/{
m GeV} \lesssim rac{\sigma_{
m self}}{m_\chi} \lesssim 0.4~{
m b}/{
m GeV}$$

Original proposal by Carlson+'92 To solve core-cusps (e.g. Spergel+'00, Calabrese+'16) Dynamics of clusters (Kaplinghat+'15)

Model building

Two main approaches

* **Top-down** "DM is a consequence"

* **Bottom-up** "DM is a requirement"

* Motivated by "defects" in SM

- Asymmetry matter-antimatter not achieved
- Strong CP pb
- Stability of the Higgs sector (hierarchy pb)
- Metastability of EW vacuum
- Flavor hierarchy
- Gauge unification
- Quantum gravity (strings)
- etc.

+++ may solve several issues + **DM candidates** - - - DM "solution" potentially embedded in large parameter space (tricky phenomenology)

* Motivation from Cosmology - scalar field cosmology (for the sake of itself) - non-minimal inflation (primordial black holes)

* Consistent QFT

+++ Production mechanism/s +++ DM phenomenology with a minimal set of parameters => predictive - - - built on purpose (ad hoc)

Model building

Two main approaches

The hierarchy pb (Higgs stability), aka the theoretical particle physics crisis

Higgs mass receives quantum corrections \rightarrow very sensitive to any new heavy scale (fine tuning)

- * Might be cured by adding canceling terms
- * e.g. **Supersymmetry** \Rightarrow bosons \leftrightarrow fermions cancel in loops
- * want to forbid new interactions, like:
- \rightarrow discrete symmetry (parity, Z2, etc.)
- => proton does not decay

=> lightest particle stable

 δm_{H}^{2}

STANDARD

STANDARD

DM: neutralino, sneutrino, gravitino, etc.

+QCD axion DM, "string-inspired" axions (eg ULA) +(Sterile) right-handed neutrino DM +Others (e.g. relaxions ...)

* Consistent OFT

+++ Production mechanism/s +++ DM phenomenology with a minimal set of parameters => predictive - - - built on purpose (ad hoc)

* Top-down "DM is a consequence"

* Bottom-up "DM is a requirement"

Status of current searches

* WIMPs (thermal DM)

- Many ongoing experiments (multiwavelength, multimessenger + laboratory)

- Sensitivity in the right ballpark for mass range 10-100 GeV => many constraints

- Still to probe: m<10 GeV, m>100 GeV

- Gamma-rays, cosmic rays, CMB, 21 cm, collider+lab searches, impact on stellar evolution, gravitational searches.

* Axions

- Several ongoing experiments (probe conversion of axions to photons, absorption of photons)

- QCD axion: mass range (10µeV) not reached yet.

- Axion-like particles (ALP, e.g. ULA): ongoing studies, astrophysical probes.

* Sterile neutrinos

- Excitement after the 3.5 keV line (evidence disputed)

- Tiny room left in parameter space from structure formation (Ly-alpha) and X-ray constraints.

Sterile neutrino (W/C)DM

e.g. Dodelson & Widrow '94, Shi & Fuller '99, Asaka, Shaposhnikov, Boyarsky+ '06-16

- \rightarrow Neutrino masses (see-saw)
- → Leptogenesis
- → DM candidates (more or less warm)
- \rightarrow keV mass range (!= thermal mass)

$$\mathcal{L} \supset \mu \left[\frac{\phi}{v}\right] \bar{\nu}_l \nu_r + M \nu_r \nu_r + \text{h.c.}$$

Aspects relevant to cosmology:

 * suppress power on small scales (free-streaming scale larger than CDM)
 → viable? (e.g. Schneider 15)
 * current limits on thermal masses > 1.7 keV

Detection (main):

- * neutrino experiments (double β decay)
- * decays to X-ray line: hints @ 3.5 keV (Bulbul+14, Boyarsky+14)
- \rightarrow 7 keV consistent with thermal mass of 2 keV(e.g. Abazajian 14)
- \rightarrow hot debate, could be systematics (cf. Jeltema & Profumo)
- \rightarrow Hitomi excludes excess in Perseus cluster (1607.07420 see also 1608.01684)

Constraints: Resonant-production mechanism almost excluded

(QCD) axions

Peccei-Quinn, Wilczek, Weinberg, Kim, Shifman, Vainshtein, Zakharov, Dine, Fishler, Srednicki, Sikivie – 70'-80'

$$\mathcal{L}_{\theta \text{QCD}} = \frac{\theta_{\text{QCD}}}{32\pi^2} \text{Tr } G_{\mu\nu} \tilde{G}^{\mu\nu}$$

NB: QCD axion needs physics beyond standard model Production mechanism (relevant to DM axions):

- * Misalignment mechanism (generic)
- * Decay of topological defects (if PQ broken after inflation)
- \rightarrow compact axion asteroids! (f~0.5) Tkachev'86
- * m << eV => large occupation # => classical field
- * QCD axions = CDM => searches through EM couplings!

$$\Omega_a h^2 \sim 2 \times 10^4 \left(\frac{f_a}{10^{16} \text{ GeV}}\right)^{7/6} \langle \theta_{a,i}^2$$

Axion cosmology (review) Marsh'15

$$m_a^2 = \frac{m_\pi^2 f_\pi^2}{(f_a/N_{\rm DW})^2} \frac{m_u m_d}{(m_u + m_d)^2}$$

Constraints on QCD axions

Compiled by Marsh'15

Non-QCD ultra-light axions (ULA = fuzzy DM)

Hu+00, Peebles'00, Marsh+15, Hui+16, Schive+14, Du+18, etc.

Same production mechanisms as axions but not meant to solve the strong CP (QCD) pb => PQ breaking + axion mass free parameters (cosmological constraints) => EM couplings optional

Main properties:

- * Suppression of small-scale perturbations
- * incoherent interference pattern and granularity on scales ~ 1-100 kpc
- * formation of solitonic cores at halo centers
- * core/cusp solved in galaxies if m~10⁻²² eV

 $i\hbar\left(\dot{\psi} + \frac{3}{2}H\psi\right) = \left(-\frac{\hbar^2}{2mR^2}\nabla^2 + m\Phi\right)\psi$ $\nabla^2 \Phi = 4\pi G m_a |\psi|^2$

Bozek+15 Halo mass function Schive+14 Solitonic cores in Fuzzy DM simulations
 k
 9 kpc/h

 y
 z = 1.07

 2.5 Mpc/h

Veltmaat+18 Evolution of solitonic cores Black holes as DM?

Simeon Bird,* Ilias Cholis, Julian B. Muñoz, Yacine Ali-Haïmoud, Marc Kamionkowski, Ely D. Kovetz, Alvise Raccanelli, and Adam G. Riess¹ ¹Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA

arXiv:1603.00464 (PRL)

LIGO+VIRGO '16

Primordial black holes

Generic idea (Zel'dovich&Novikov, Hawking, Carr&Hawking'70's):

* Very large density fluctuations may collapse directly into Bhs in the radiation era

- * $M_{_{pbh}}$ ~ mass within horizon
- * Fluctuation amplitude ~ 10^{-5} at CMB scales
- $* \sim 0.01$ needed => more power (e.g. non gaussianity) needed on very small scales
- * Production enhanced at phase transitions (e.g. QCD \leftrightarrow Mh~1 M_{sun})
- * A potentially macroscopic CDM candidate

Primordial black holes

- * Most (past) constraints based on assuming peak mass function
- * Huge effort to reconsider them (e.g. Green+, Kamionkowski+, Carr+, Garcia-Bellido+)
- * Typically two windows: below and above microlensing constraints.
- * If mass function extended enough, PBHs could be ~100% of DM
- \rightarrow if 1-100 Msun, might solve core/cusp
- \rightarrow GW with < 1 Msun a specific signature

potentially strong constraints from lensing of SNe Ia for $M_{pbh} > 1 M_{sun}$ \rightarrow see Zumalacarregui & Seljak '17 (PBHs < 0.4 CDM)

Assume DM particle coupled to SM:

 \rightarrow Production of DM from plasma if T>m

 \rightarrow Chemical equilibrium if production rate > expansion rate

(then production = annihilation)

- \rightarrow Annihilation if m>T (species is depleted)
- \rightarrow Annihilation ceases when rate < expansion rate
- \Rightarrow Freeze out (or in) \leftrightarrow relic abundance

Thermal contact (DM temperature) ensured by both * production/annihilation;

* elastic scattering.

After freeze out, DM still thermally coupled to plasma.

Thermal/kinetic decoupling

when scattering rate < expansion rate
=> Free streaming DM particles
=> Sets the minimal size of DM structures

Assume DM particle coupled to SM:

 \rightarrow Production of DM from plasma if T>m

 \rightarrow Chemical equilibrium if production rate > expansion rate

(then production = annihilation)

- \rightarrow Annihilation if m>T (species is depleted)
- \rightarrow Annihilation ceases when rate < expansion rate
- \Rightarrow Freeze out (or in) \leftrightarrow relic abundance

Thermal contact (DM temperature) ensured by both * production/annihilation;

* elastic scattering.

After freeze out, DM still thermally coupled to plasma.

Thermal/kinetic decoupling

when scattering rate < expansion rate
=> Free streaming DM particles
=> Sets the minimal size of DM structures

Solve moments of Liouville-Boltzmann equation for coupled species

 $\frac{d f(x^{\mu}, p^{\mu})}{d f(x^{\mu}, p^{\mu})} = 0$

 $\bar{\chi}$

A

Ā

Master equation: Boltzmann equation (e.g. Lee & Weinberg '77, Bernstein+'85-88)

$$\frac{df(x^{\mu}, p^{\mu})}{d\lambda} = \widehat{C}[f] \longrightarrow \qquad \frac{dY_{\chi}}{dx} \propto \frac{g_{\star}^{1/2}(x)}{x^2} \langle \sigma v \rangle \left\{ \frac{Y_{\chi, eq}^2}{Y_{\chi, eq}^2} - \frac{Y_{\chi}^2}{Y_{\chi}^2} \right\}$$

 $\bar{\chi}$

Master equation: Boltzmann equation (e.g. Lee & Weinberg '77, Bernstein+'85-88)

 \rightarrow generic properties: extended dark sector (interaction mediators)

Kinetic decoupling, free streaming scale, and small-scale structures

$$\lambda_{\rm fs} = a_{\rm eq} \int_{t_{\rm kd}}^{t_{\rm eq}} dt \frac{v(t)}{a(t)} \approx v_{\rm kd} (a_{\rm kd}/a_{\rm eq})/H_{\rm eq}$$

* Density perturbations grow efficiently after matter-radiation equivalence

- * Kinetic decoupling time sets free-streaming scale
- * Other competing effects (collisional damping)
- > Minimal size of structures have impact on DM searches> Depends on DM interaction properties

[e.g. Hofmann+01, Berezinsky+03, Green+04-05, Bertschinger 06, Bringmann+07, Facchinetti+ in prep.]

Kinetic decoupling, free streaming scale, and small-scale structures

Aquarius, Springel+08 [see also Molitor+'15]

-5 0 5 10 15 X (kpc) MW masers, Reid+14

Gaia: Data Release 2 (DR2) @ESA

Constrained MW mass models matter in predicting/constraining ...

The Galactic subhalo population down to the tiniest masses \rightarrow Subhalo number density + mass density profiles

The velocity distribution of dark matter \rightarrow moments of the relative speed from improved Eddington equation

Will improve with Gaia

Local dynamics probed with Gaia

* Jeans theorem: Phase-space distribution of steady-state system naturally described by functions of closed integrals of motion

* Natural basis is: action (J) and angle (θ) conjugate variables; the Hamiltonian reads H(J) (Binney & Tremaine '08)

* At equilibrium, $f_0(J)$ solution of collisionless Boltzmann equation

* Take perturbations of the bar and spiral arms into account: resonances (trapped orbits)!

=> new set of action-angle coordinates (Monari, Famaey, Fouvry, Binney '17)

=> applied to Gaia DR2 (Monari, Famaey, Siebert, Wegg & Gerhard '19), using Galactic bar model of Portail+'17

Sample of $3x10^5$ stars within 200 pc + bar model only (no spiral arms) => find the predicted resonant orbits in the data!

=> somewhat a unique long-distance test of the Portail+ bar model

=> favors a DM core at the Galactic center (but doesn't match inner RC)

Global dynamics probed with Gaia

Streams (Ibata et al.):

>10 new confirmed streams in total

Integrate streams orbits by exploring all distances and radial velocities until stream candidate found (STREAMFINDER)

Phlegethon: a faint nearby(3.8 kpc) disk-like retrograde stream (~2580 M) Ibata et al (2018)

Stellar streams: a powerful probe of global dynamics + subhalos (e.g. heating and gaps)

Conclusions

* DM candidates

- \rightarrow no longer particle-theory driven
- \rightarrow focus on production mechanism and interaction properties vs. observational signatures
- \rightarrow a rich phenomenology, but many potentially observable signatures

 \rightarrow astrophysical (multiwavelength+multimessenger – photons, neutrinos + gravitational) + cosmological observations (CMB+21cm+Ly-alpha) very powerful probes

* The Milky Way (MW) itself provides many probes of fundamental dark matter properties

- * MW is a single object:
- \rightarrow detailed properties NOT predicted by cosmological simulations (specific baryonic distribution, merger history, etc.)
- \rightarrow not overstate the theoretical consequences of (non)observations (e.g. core/cusp in the MW)
- * Strong complementarity with other probes (other galaxies, other scales, other ages).

* Dark matter structuring properties on small scales very important (far below resolution of cosmological simulations \rightarrow need to build and rely on analytical models) \rightarrow strong impact on several observables + gravitational searches

- * Gaia DR2: (already) impressive improvement on dynamical understanding of MW (incl. merger history).
- \rightarrow global dynamics (DM halo + gravitational potential)
- \rightarrow local dynamics (local DM density)
- \rightarrow subhalos (gaps in stellar streams, etc.)

* A lot theoretical/modeling work needed to improve predictions

Evidence for Two Early Accretion Events That Built the Milky Way Stellar Halo

G. C. Myeong¹, E. Vasiliev^{1,2}, G. Iorio¹, N. W. Evans¹, V. Belokurov¹ ¹Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

²Lebedev Physical Institute, Leninsky Prospekt 53, Moscow 119991, Russia

arXiv:1904.03185v

Defining the whole subhalo "phase space"

Tides from stellar encounters and disk shocking

Encounters with stars: (Ostriker+,Weinberg+, Gnedin+,80-00, Berezinsky+03) * impulse approximation during fly-by

=> negligible wrt disk shocking

$$\Delta E = \frac{1}{2} \int d^3 \vec{r} \,\rho_{\rm int}(r) (\delta v_x - \delta \tilde{v}_x)^2$$
$$\Delta E = \frac{2\pi}{3} \left(\frac{2G_{\rm N}M_*}{v_{\rm rel}l^2}\right)^2 \int_0^R dr \, r^4 \,\rho_{\rm int}(r)$$

Disk shocking:

* impulse approximation during crossing

- * adiabatic invariance correction
- => the dominant effect

$$\frac{\mathrm{d}v_z}{\mathrm{d}t} = g_\mathrm{d}(R, z_\mathrm{p}) - g_\mathrm{d}(R, z_\mathrm{c})$$
$$\simeq \Delta z \, \frac{\partial g_\mathrm{d}}{\partial z} \left(z_\mathrm{c} \right) \,,$$
$$\Delta v_z = \int \mathrm{d}t \, \Delta z(t) \, \frac{\partial g_\mathrm{d}}{\partial z} \left[z_\mathrm{c}(t) \right]$$
$$\epsilon_k(z) \equiv \frac{2 \, g_{z,\mathrm{disk}}^2(z=0) \, z^2}{V_z^2} \, A(\eta)$$

Stellar disk

The coldness of Dark Matter

Searches for thermal dark matter

* Production at colliders (model dependent) => collider searches

* Annihilation/decay rate potentially large in dense DM regions: centers of halos + CMB => indirect searches

* Beware velocity dependence (scalar exchange between fermions v-suppressed; pseudo-scalar exchange is not)

- * elastic or inelastic scattering
- \rightarrow nuclear recoils at underground experiments
- => direct searches
- \rightarrow scattering with astrophysical objects
- => stellar physics
- => neutrinos from capture+annihilation in stars
- => indirect searches

* Beware velocity dependence (pseudo-scalar exchange v-suppressed; scalar exchange is not)

Astro/particle complementarity

Direct WIMP searches

Billard+13

Also sensitive at lower energy: * electronic recoils (e.g. Essig+12) * Bremsstralhung (e.g. Pradler & Kouvaris 17)

Up to the skies!

in galaxies $\widehat{}$ $+b/x + \mathcal{O}(x^{-2})$ $\langle \sigma v \rangle \approx$ $ar{p},\,ar{D}\,\&\,e^+$ relic density $\& \nu$'s

Courtesy P. Salati

Diffuse gamma-ray emission

=> check spectral/spatial

properties wrt background

Requirements (and/or): * clean signal (spectral lines or features) * large signal/noise ratio => Control astrophysical backgrounds

Big DM subhalos * **Dwarf Galaxies** (~40) – no other HE astrophysical processes expected there.

Galactic Center

* Closest/Largest expected annihilation rate
* Large theoretical uncertainties (background not controlled)

Cosmic-ray transport

Down to MeVDM with cosmic rays + p-wave

ULA probes

Armengaud+'17 (Ly-alpha from SDSS DR9)

Tidal disruption of subhalo solitonic cores

Other effects:

- * Sizable oscillations of the core density (Veltmaat+18)
- * $\rho_c = f(r_c)$ (Deng+18)
- * Abundance of ultra-faint lenses HFF@z=6 (Menci+17)
- * Probe incoherent zone (talk by N. Amorisco)
- * Ly-alpha => A catch-22 scenario? (like Maccio+12 for WDM)
- * 21cm? (See Schneider'18)

e.g. Goodmann & Witten '84, Drukier+ '85

Initial statistical/cosmological properties

The initial mass function (linear + ~non-linear) From primordial spectrum to mass function (ext. Press-Schechter) $P(k,t) = D_{+}^{2}(t) \{ P(k) \equiv A_{0} T^{2}(k) P_{\text{prim}}(k) \}$ $\sigma^2(R) \equiv \varepsilon_R(|\vec{r}| \to 0) = \int d\ln k \,\Delta^2(k) \,|\tilde{W}(k,R)|^2$ $\frac{dn}{dM} = \left\{ V_M^{-1} \equiv \frac{\rho_M}{M} \right\} \left| \frac{dF(\delta > \delta_c)}{dM} \right| = \frac{\rho_M}{M^2} \left| \frac{d\ln\sigma}{d\ln M} \right| \nu f(\nu)$ $\frac{d\mathcal{P}(m_{200})}{dm_{200}} \stackrel{\sim}{\propto} m_{200}^{-\alpha_m} \left\{ 1 - e^{-\left[\frac{m_{200}}{m_{\text{cut}}}\right]^n} \right\}$ Typically a power law with a cutoff (minimal) mass. Concentration vs. mass 2.0 z = 0Log₁₀ MultiDarl Bolshoi Ishivama+13 Moore+01 Colín+04 Ishiyama 14 Anderhalden & Diemand 13 Diomand+0⁶ Log10 M200 [h-1 Ma] Sanchez-Conde+13 $m_{200} = 10^{\circ}$ $\sigma_{\rm in \ c} = 0.26$ WMAP1-RELAXED + $\sigma_{\rm in c} = 0.25$ $m_{200} = 10^0$ $- m_{200} = 10^6$ dP(c)/dc for 3 masses P(A log o Concentration lognormal RDF - 0.04 0.03 0.02 0.01 -0.4 0 0.4 -0.40 0.4 ∆log c|M ∆ log c|M Maccio+08 Stref, PhD th. '18

Stref, PhD th. '18

$$\bar{c}_{200}(m_{200}, z) = K_{200} \left[\frac{\rho_{\rm c}(z_c)}{\rho_{\rm c}(z)} \right]^{1/3}$$

Fitting formula from Sanchez-Conde+13 + lognormal DF

$$\frac{d\mathcal{P}_c}{dc}(c,m) = \frac{1}{K_c} \frac{\exp\left\{-\frac{(c-\bar{c}(m))^2}{2\,\sigma_c^2}\right\}}{c\,\sqrt{2\,\pi\,\sigma_c^2}}$$